double arrow

Напряжения и деформации при кручении круглого вала


Расчет на прочность и жёсткость

Рассмотрим брус круглого сечения, нагруженный парами сил в плоскости торцевого сечения (рис.7.7). В поперечных сечениях этого бруса возникает постоянный крутящий.момент

мя сечениями в процессе деформации кручения не изменяется (εz = 0);

3) поперечные сечения в своей плоскости не деформируются, т.е., радиусы не искривляются и не изменяют своей длины, они лишь поворачиваются как жесткие диски (εх=0, εу=0).

На основании этих допущений σх у zху =0, поэтому в поперечных сечениях будут действовать только касательные напряжения τzx и τzу, следовательно, при кручении брус испытывает деформацию чистого сдвига.

Двумя поперечными сечениями выделим из вала элемент длиной dz , а из него затем выделим элементарное кольцо с радиусами ρ и ρ + dρ (рис. 7.8). Будем считать левое торцевое сечение неподвижным, тогда правое торцевое сечение кольца повернется под действием крутящего момента относительно левого на угол dφ. Образующая цилиндра АВ при этом повернётся на угол γ и займет положение . С одной стороны дуга / =ρdφ, с другой - В/ В/ = γdz, следовательно,




. (7.6)

Угол γ – это угол сдвига цилиндрической поверхности, а величина Θ называется относительным углом закручивания (аналогично).

По закону Гука для сдвига τ=Gγ, тогда , откуда следует (7.7) Подставляя (7.7) в уравнение (7.5), получим    
Рис. 7.8

Так как , тоУчитывая, что получим

,(а), .

Из последнего выражения следует формула угла закручивания

(7.8)

Если крутящий момент Мк и жесткость вала GІρ по его длине не изменяются, то

τ max
(7.9)

Вернёмся к выражению (7.7). Используя уравнение (а), получим формулу касательных напряжений при кручении круглого вала

= (7.10)

Согласно этой формуле касательные напряжения в поперечном сечении вала распределяются вдоль радиуса по линейному закону, достигая наибольшей величины в точке наиболее удаленной от оси бруса (рис.7.9).

Согласно (7.10): или .

Введя обозначение(момент сопротивления сечения при кручении), получим

.

Для круглого сечения

Материал вала возле оси недогружен, поэтому применяют пустотелые валы. При равных площадях поперечных сечений и одинаковом крутящем моменте в пустотелом вале напряжения будут меньше, а при равных напряжениях в пустотелом вале крутящий момент будет больше.

Для такого вала ,

где D- наружный диаметр, d – внутренний диаметр вала,,

.

Расчёт на прочность круглого вала может выполняться по двум методам: по допус-каемым напряжениям и по допускаемым нагрузкам. В данном разделе рассмотрим первый метод- метод допускаемых напряжений, так как он наиболее часто используется на практике.

Рис.7.10
Предельное состо-яние в опасной точке, расположенной на повер-хности вала (рис.7.10) достигается в сечении с наибольшим крутящим моментом. В этой точке будет напряжённое сос-тояние чистого сдвига, т.е. по граням элементарного параллелепипеда действу-ют только касательные напряжения (рис.7.11). В этом случае



Рис.7.11
Условие пластичности по энергетической теории предельного напряжённого

состояния определяется выражением

.

Для рассматриваемого случая оно примет вид =.

Для безопасной работы вала должно выполняться условие ,т.е.

, где .

Таким образом, условие прочностипри кручении круглого вала запишется формулой:

. (7.11)

Из него следуют формулы для назначения размеров поперечного сечения вала и определения грузоподъёмности:

, (7.12)

Условие жесткости . (7.13)

Произведение GIρ называется жесткостью при кручении. Іρ – полярный момент инерции, G – модуль упругости при сдвиге.

Если вал имеет несколько участков, то угол закручивания φ на всей его длине найдется как сумма углов закручивания на всех участках φi :

φ =∑ φi =∑ (7.14)

Пример: подобрать размеры круглого и кольцевого сечения вала, передающего мощ-ность 80 кВт при числе оборотов n=600об/мин, если , α =. Сравнить массы валов с указанными сечениями.

Мк = , .

Для круглого сечения : , тогда ,

площадь сечения А = .

Для кольцевого сечения: , ,

, площадь сечения А=.

Массы валов будут пропорциональны площадям поперечных сечений , т.е., полый вал будет почти в два раза легче сплошного вала.









Сейчас читают про: