double arrow

Метод узловых потенциалов в матричной форме

На основании полученного выше соотношения (4), представляющего собой, как было указано, матричную запись закона Ома, запишем матричное выражение:

, (14)

где - диагональная матрица проводимостей ветвей, все члены которой, за исключением элементов главной диагонали, равны нулю.

МатрицыZ и Y взаимно обратны.

Умножив обе части равенства (14) на узловую матрицуАи учитывая первый закон Кирхгофа, согласно которому

, (15)

получим:

. . (16)

Выражение (16) перепишем, как:

. (17)

Принимая потенциал узла, для которого отсутствует строка в матрице А, равным нулю, определим напряжения на зажимах ветвей:

. (18)

Тогда получаем матричное уравнение вида:

. (19)

Данное уравнение представляет собой узловые уравнения в матричной форме. Если обозначить

(20)
, (21)

то получим матричную форму записи уравнений, составленных по методу узловых потенциалов:

(22)

где - матрица узловых проводимостей; - матрица узловых токов.

В развернутом виде соотношение (22) можно записать, как:

(23)

то есть получили известный из метода узловых потенциалов результат.

Рассмотрим составление узловых уравнений на примере схемы по рис. 4.

Данная схема имеет 3 узла (m=3) и 5 ветвей (n=5). Граф схемы с выбранной ориентацией ветвей представлен на рис. 5.

Узловая матрица (примем )

А

Диагональная матрица проводимостей ветвей:

Y ,

где .

Матрица узловых проводимостей

.

Матрицы токов и ЭДС источников

. .Следовательно, матрица узловых токов будет иметь вид:

.Таким образом, окончательно получаем:

,

где ; ; ; ; .


Сейчас читают про: