double arrow

Матрицы сопротивлений и проводимостей для цепей со взаимной индукцией

Особенности составления матричных уравнений при наличии индуктивных связей и ветвей с идеальными источниками

Лекция N 12

Как было показано ранее (см. лекцию N 6 ), для схем, не содержащих индуктивно связанные элементы, матрицы сопротивлений и проводимостей ветвей являются диагональными, т.е. все их элементы, за исключением стоящих на главной диагонали, равны нулю.

В общем случае разветвленной цепи со взаимной индукцией матрица сопротивлений ветвей имеет вид

Z .

Здесь элементы главной диагонали , ,… - комплексные сопротивления ветвей схемы; элементы вне главной диагонали - комплексные сопротивления индуктивной связи i- й и k – й ветвей (знак “+” ставится при одинаковой ориентации ветвей относительно одноименных зажимов, в противном случае ставится знак “-”).

Матрица проводимостей ветвей в цепях со взаимной индукцией определяется согласно

Y = Z –1 .

Зная матрицы и Y , можно составить контурные уравнения, а также узловые, т.е. в матричной форме метод узловых потенциалов распространяется на анализ цепей с индуктивно связанными элементами.

Следует отметить, что обычно не все ветви схемы индуктивно связаны между собой. В этом случае с помощью соответствующей нумерации ветвей графа матрице Z целесообразно придать квазидиагональную форму

Z ,

что облегчает ее обращение, поскольку

Y ,

где подматрицы могут быть квадратными диагональными или недиагональными.

В качестве примера составим матрицы Z иYдля схемы на рис. 1,а, граф которой приведен на рис. 1,б.


Для принятой нумерации ветвей матрица сопротивлений ветвей


Z .

В этой матрице можно выделить три подматрицы, обращая которые, получим

Z-111 ;
Z-122 ;
Z-133 .

Таким образом, матрица проводимостей ветвей

Y .

Отметим, что при принятой ориентации ветвей и .

 
 


В качестве примера матричного расчета цепей с индуктивными связями запишем контурные уравнения в матричной форме для цепи рис. 2,а.



Сейчас читают про: