double arrow

Метод кусочно–линейной аппроксимации

Данный метод основан на замене характеристики нелинейного элемента отрезками прямых, на основании чего осуществляется переход от нелинейного дифференциального уравнения к нескольким (по числу прямолинейных отрезков) линейным, которые отличаются друг от друга только значениями входящих в них коэффициентов. Необходимо помнить, что каждое из линейных уравнений справедливо для того временного интервала, в течение которого рабочая точка перемещается по соответствующему линеаризованному участку. Временные границы для каждого участка определяются исходя из достижения одной (любой) из переменных, определяющих характеристику нелинейного элемента, своих граничных значений для рассматриваемого прямолинейного участка. В соответствии с законами коммутации значения тока в ветви с катушкой индуктивности или напряжения на конденсаторе в эти моменты времени являются начальными значениями соответствующих переменных для соседних прямолинейных участков, на основании чего определяются постоянные интегрирования. Значение параметра линеаризуемого нелинейного элемента для каждого участка ломаной определяется тангенсом угла, образованного рассматриваемым прямолинейным отрезком с соответствующей осью системы координат.

В качестве примера рассмотрим применение данного метода для решения предыдущей задачи.

1. Заменим рабочий участок зависимости (см. рис. 2) двумя прямолинейными отрезками и . Первому из них соответствует уравнение , второму – . При этом начальная точка определяется током , а конечная точка - током .

Соответствующие этим участкам индуктивности

;

.

2. В соответствии с указанной линеаризацией нелинейное дифференциальное уравнение состояния цепи

заменяется двумя линейными:

;

.

3. Решением первого уравнения является

и второго -

,

где ; ; ; .

Время t1, соответствующее моменту перехода с первого участка на второй, определим из уравнения

,

откуда

.


Сейчас читают про: