Точка на линии

Положение о том, что точка на прямой проецируется в точку на проекции этой прямой (одно из инвариантных свойств проецирования) справедливо и для кривой

Рис.29

линии. На комплексном чертеже это свойство должно проявляться, по крайней мере, на двух плоскостях проекций (Рис.29).

Задачи на принадлежность точки к прямой линии, как видно по чертежу, не вызывают особых затруднений. Кроме тех случаев, когда эта линия – линия уровня, заданная двумя проекциями с единственной линией связи. Как показано на Рис.30.

Если не строить третью проекцию, то для решения задачи приходится использовать теорему Фалеса. Смысл теоремы в том, что две прямые на плоскости делятся секущими параллельными прямыми на пропорциональные отрезки.


Пример (Рис.30). Построить недостающую (фронтальную) проекцию точки , принадлежащей отрезку , параллельному плоскости .

Дано: ______________ . Решение: 1). 2). , где 3). , . Проекция точки -искомая
Рис.30

Искомая проекция точки должна разделить фронтальную поверхность отрезка AB в таком же отношении, в каком отношении заданная проекция точки делит профильную проекцию этого отрезка: .

Воспользуйся теоремой Фалеса. Для этого на произвольной прямой , пересекающей в точке , отложим отрезок , равный профильной проекции отрезка Проведя две параллельные прямые и получим искомую проекцию точки , поскольку обеспечены условия равенства отношений


Понравилась статья? Добавь ее в закладку (CTRL+D) и не забудь поделиться с друзьями:  



double arrow
Сейчас читают про: