Средняя арифметическая и средняя гармоническая величины

Сущность и значение средних величин, их виды

Наиболее распространенной формой статистического показателя является средняя величина. Показатель в форме средней величи­ны выражает типичный уровень признака в совокупности. Широкое применение средних величин объясняется тем, что они позволяют и сравнивать значения признака у единиц, относящихся к разным сово­купностям. Например, можно сравнивать среднюю продолжитель­ность рабочего дня, средний тарифный разряд рабочих, средний уровень заработной платы по различным предприятиям.

Сущность средних величин заключается в том, что в них взаи­мопогашаются отклонения значений признака у отдельных единиц со­вокупности, обусловленные действием случайных факторов. Поэтому средние величины должны рассчитываться для достаточно много­численных совокупностей (в соответствии с законом больших чи­сел). Надежность средних величин зависит также от колеблемости значений признака в совокупности. В общем случае, чем меньше ва­риация признака и чем больше совокупность, по которой определяет­ся средняя величина, тем она надежнее.

Типичность средней величины непосредственным образом свя­зана также с однородностью статистической совокупности. Сред­няя величина только тогда будет отражать типичный уровень призна­ка, когда она рассчитана по качественно однородной совокупности. В противном случае метод средних используется в сочетании с методом группировок. Если совокупность неоднородна, то общие средние заменяются или дополняются групповыми средними, рассчитанными по качественно однородным группам.

Выбор вида средних определяется экономическим содержание ем исследуемого показателя и исходных данных. Наиболее часто в статистике применяются следующие виды средних величин: степен­ные средние (арифметическая, гармоническая, геометрическая, квадратическая, кубическая и т. д.), средняя хронологическая, а также структурные средние (мода и медиана).

Средняя арифметическая величина наиболее часто встреча­ется в социально-экономических исследованиях. Средняя арифмети­ческая применяется в форме простой средней и взвешенной средней.

Средняя арифметическая простая рассчитывается по несгруппированным данным на основании формулы (4.1):

где x - индивидуальные значения признака (варианты);

n - число единиц совокупности.

Пример. Требуется найти среднюю выработку рабочего в бри­гаде, состоящей из 15 человек, если известно количество изделий, произведенных одним рабочим (шт.): 21; 20; 20; 19; 21; 19; 18; 22; 19; 20; 21; 20; 18; 19; 20.

Средняя арифметическая простая рассчитывается по несгруппированным данным на основании формулы (4.2):

где f - частота повторения соответствующего значения признака (варианта);

∑f — общее число единиц совокупности (∑f = n).

Пример. На основании имеющихся данных о распределении ра­бочих бригады по количеству выработанных ими изделий требуется найти среднюю выработку рабочего в бригаде.

Выработка деталей одним рабочим, шт., x Число рабочих, чел., f xf
     
ВСЕГО    

Примечание 1. Средняя величина признака в совокупности может рассчитываться как на основании индивидуальных значений признака, так и на основании групповых (частных) средних, рассчитанных по отдельным частям совокупности. При этом используется формула средней арифметической взвешенной, а в качестве вариантов значений признака рассматриваются групповые (частные) средние (xj).

Пример. Имеются данные о среднем стаже рабочих по цехам завода. Требуется определить средний стаж рабочих в целом по заводу.

Номер цеха Средний стаж работы, лет., X Число рабочих, чел., f
     
ВСЕГО -  

Примечание 2. В том случае, когда значения осредняемого признака зада­ны в виде интервалов, при расчете средней арифметической величины в качестве значений признака в группах принимают средние значения этих интервалов (х ). Таким образом, интервальный ряд преобразуется в дискретный. При этом величи­на открытых интервалов, если таковые имеются (как правило, это первый и по­следний), условно приравнивается к величине интервалов, примыкающих к ним.

Пример. Имеются данные о распределении рабочих предпри­ятия по уровню заработной платы.

Группы рабочих по заработной плате, тыс.руб. Число рабочих, чел., f Средняя заработная плата, тыс.руб. x xf
До 250 250-350 350-450 450-550 550-650 650 и более      
ВСЕГО   -  

Средняя гармоническая величина является модификацией средней арифметической. Применяется в тех случаях, когда известны индивидуальные значения признака, т. е. варианты (x), и произведений вариант на частоту (xf = М), но неизвестны сами частоты (f).

Средняя гармоническая взвешенная рассчитывается по формуле (4.3):

Пример. Требуется определить средний размер заработной платы работников объединения, состоящего из трех предприятий, если известен фонд заработной платы и средняя заработная плата работников по каждому предприятию.

Предприятие Фонд заработной платы, тыс. руб., xf Средняя заработная плата, тыс. руб., x
  40 700  
  38 700  
  50 700  
ВСЕГО   -

Средняя гармоническая простая в практике статистики исполь­зуется крайне редко. В тех случаях, когда xf = Mm = const, средняя гар­моническая взвешенная превращается в среднюю гармоническую простую (4.4):

Пример. Две машины прошли один и тот же путь. При этом одна из них двигалась со скоростью 60 км/ч, вторая - со скоростью 80 км/ч. Требуется определить среднюю скорость машин в пути.

Другие виды степенных средних. Средняя хронологическая

Средняя геометрическая величина используется при расчете средних показателей динамики. Средняя геометрическая применяется в форме простой средней (для несгруппированных данных) и взве­шенной средней (для сгруппированных данных).

Средняя геометрическая простая (4.5):

где n — число значений признака;

П — знак произведения.

Средняя геометрическая взвешенная (4.6):

Средняя квадратическая величина используется при расчете показателей вариации. Применяется в форме простой и взвешенной.

Средняя квадратическая простая (4.7):

Средняя квадратическая взвешенная (4.8):

Средняя кубическая величина используется при расчете показателей асимметрии и эксцесса. Применяется в форме простой взвешенной.

Средняя кубическая простая (4.9):

Средняя кубическая взвешенная (4.10):

Средняя хронологическая величина используется для расчета среднего уровня ряда динамики (4.11):

Структурные средние

Помимо рассмотренных выше средних величин в статистике используются структурные средние, к которым относятся мода и ме­диана.

Модой (Мо) называется значение изучаемого признака (вари­ант), которое чаще всего встречается в совокупности. В дискретном ряду мода определяется достаточно просто — по максимальному пока­зателю частоты. В интервальном вариационном ряду мода приблизительно соответствует центру модального интервала, т. е. интервала, имеющего большую частоту (частость).

Конкретное значение моды рассчитывается по формуле (4.12):

где нижняя граница модального интервала;

ширина модального интервала;

частота, соответствующая модальному интервалу;

частота интервала, предшествующего модальному;

частота интервала, следующего за модальным.

Медианой (Ме) называется значение признака, расположенное в середине ранжированного ряда. Под ранжированным понимают ряд, упорядоченный в порядке возрастания или убывания значений признака. Медиана делит ранжированный ряд на две части, одна из которых имеет значения признака не большие, чем медиана, а друга - не меньшие.

Для ранжированного ряда с нечетным числом членов медиа­ной является варианта, расположенная в центре ряда. Положение ме­дианы определяется порядковым номером единицы ряда в соответст­вии с формулой (4.13):

где n - число членов ранжированного ряда.

Для ранжированного ряда с четным числом членов медиа­ной является среднее арифметическое из двух смежных значений, на­ходящихся в центре ряда.

В интервальном вариационном ряду для нахождения медиа­ны применяется следующая формула (4.14):

где нижняя граница медианного интервала;

ширина медианного интервала;

накопленная частота интервала, предшествующего медианному;
частота медианного интервала.

Пример. Рабочие бригады, состоящей из 9 чел., имеют сле­дующие тарифные разряды: 4; 3; 4; 5; 3; 3; 6; 2;6. Требуется опреде­лить модальное и медианное значения тарифного разряда.

Поскольку в данной бригаде больше всего рабочих 3-го разряда, то этот разряд и будет модальным, т. е. Мо = 3.

Для определения медианы осуществим ранжирование исходного ряда в порядке возрас­тания значений признака:

2; 3; 3; 3; 4; 4; 5; 6; 6.

Центральным в этом ряду является пятое по счету значение признака. Соответственно Ме = 4.

Пример. Требуется определить модальный и медианный тарифный разряд рабочих завода по данным следующего ряда распределения.

Разряд Кол-во рабочих, чел. Накопленная частота S
    13+25=38 38+30=68 68+19=87 87+10=97 97+3=100
ВСЕГО    

Поскольку исходный ряд распределения является дискретным, то модальное значение определяется по максимальному показателю частоты. В данномпримере на заводе больше всего рабочих 3-го разряда (fmax = 30), т.е. этот разряд является модальным (Мо = 3).

Определим положение медианы. Исходный ряд распределения построен на основании ранжированного ряда, упорядоченного по воз­растанию значений признака. Середина ряда находится между 50-м и 51-м порядковыми номерами значений признака. Выясним, к какой группе относятся рабочие с этими порядковыми номерами. Для это­го рассчитаем накопленные частоты. Накопленные частоты ука­зывают на то, что медианное значение тарифного разряда равно трем (Ме = 3), поскольку значения признака с порядковыми номе­рами от 39-го до 68-го, в том числе 50-е и 51-е, равны 3.

Пример. Требуется определить модальную и медианную зара­ботную плату рабочих завода по данным следующего ряда распределения.

Размер заработной платы, тыс.руб. Кол-во рабочих, чел. Накопленная частота S
1 2 3
180-240 240-300 300-360 360-420 420-480 480-540 540-600 5 15 20 30 15 10 5 5 20 40 70 85 95 100
ВСЕГО 100 100

Поскольку исходный ряд распределения является интерваль­ным, то модальное значение заработной платы рассчитывается по формуле. При этом модальным является интервал 360-420 с максимальной частотой, равной 30.

Медианное значение заработной платы также рассчитывает­ся по формуле. При этом медианным является интервал 360-420, на­копленная частота которого равна 70, тогда как накопленная час­тота предыдущего интервала составляла только 40 при общем числе единиц, равном 100.


Понравилась статья? Добавь ее в закладку (CTRL+D) и не забудь поделиться с друзьями:  




Подборка статей по вашей теме: