Вольфрам

Натрий

Железо

Сталь (железо) как наиболее дешевый и доступный металл, обладающий высокой механической прочностью, в ряде случаев используют в качестве проводникового материала. Даже чистое железо имеет более высокое по сравнению с медью и алюминием удельное сопротивление ρ (порядка 0,1 мкОм*м); значение ρ стали, т. е. железа с примесью углерода и других элементов, еще выше.

При переменном токе в стали, как магнитном материале, сильно сказывается поверхностный эффект, поэтому активное сопротивление стальных проводников для переменного тока выше, чем для постоянного. Кроме того, при переменном токе в стальных проводниках появляются потери мощности на гистерезис.

Обычная сталь обладает малой коррозионной стойкостью: даже при нормальной температуре, особенно в условиях повышенной влажности, она быстро ржавеет; при повышении температуры скорость коррозии резко возрастает. Поэтому поверхность стальных проводов должна быть защищена слоем более стойкого материала, например цинка.

Железо имеет высокий температурный коэффициент удельного сопротивления ТК ρ. Поэтому тонкую железную проволоку, помещенную для защиты от окисления в баллон, заполненный водородом, можно применять в барретерах, т. е. в приборах, в которых используется зависимость сопротивления от силы тока, нагревающего помещенную в них проволоку. Этот прибор сохраняет постоянную силу тока при колебаниях напряжения.

Интересным и перспективным проводниковым материалом является металлический натрий. Натрий может быть получен путем электролиза расплавленного хлористого натрия NaCl в практически неограниченных количествах. Удельное сопротивление натрия в 2,8 раза больше ρ меди и в 1,7 раз больше ρ алюминия. Но благодаря очень малой плотности натрия (он легче воды; плотность его примерно в 9 раз меньше плотности меди) провод из натрия при данной проводимости на единицу длины (при нормальной температуре) должен быть значительно легче, чем провод из любого другого металла.

Однако натрий весьма активен химически - он интенсивно окисляется на воздухе и бурно реагирует с водой, кроме того, натрий весьма мягок и имеет малый предел прочности при растяжении и других деформациях. Поэтому натриевый провод должен быть защищен герметизирующей оболочкой, которая должна также придавать проводу необходимую механическую прочность. Натриевые провода и кабели изготовляют в пластмассовых (полиэтиленовых) оболочках, что помимо герметизации и повышения механической прочности провода или кабеля создает его электрическую изоляцию.

Это чрезвычайно тяжелый твердый металл серого цвета. Среди металлов он обладает наиболее высокой температурой плавления. Получают из руд раличного состава; промежуточным продуктом является вольфрамовая кислота H2WO4, из которой путем восстановления водородом при нагреве до 900°С, получают металлический вольфрам в виде мелкого порошка. Из этого порошка прессуют стержни, которые подвергают сложной термической обработке в атмосфере водорода, ковке и волочению в проволоку (диаметром до 0,01 мм), прокатке в листы и т. п.

Для вольфрама характерна слабая связь между отдельными кристаллами, поэтому сравнительно толстые вольфрамовые изделия хрупки. При механической обработке ковкой и волочением вольфрам приобретает волокнистую структуру.

Рисунок 3.3 – Зависимость скорости окисления металла (количество окисляющегося металла за час с квадратного метра поверхности металла, соприкасающейся с воздухом) от температуры

этим объясняется гибкость тонких вольфрамовых нитей. При уменьшении толщины вольфрамовой проволоки возрастает и ее предел прочности при растяжении σр (примерно от 500-600 МПа для стержней диаметром 5 мм до 3000-4000 МПа для тонких нитей; удлинение при разрыве Δl/l таких нитей - около 4%).

Вольфрам является одним из важнейших металлических материалов электровакуумной техники. Применение вольфрама для изготовления нитей ламп накаливания было впервые предложено русским изобретателем А. Н. Лодыгиным в 1890 г.

Вследствие тугоплавкости и большой механической прочности при повышенных температурах вольфрам можно использовать при температуре выше 2000°С, но лишь в высоком вакууме или в атмосфере инертного газа (азот, аргон и т. п.), так как уже при нагреве до температуры в несколько сот градусов Цельсия в присутствии кислорода он сильно окисляется (рисунок 3.3).

Вольфрам применяют также для изготовления контактов.

К преимуществам вольфрамовых контактов можно отнести:

а) устойчивость в работе;

б) малый механический износ ввиду высокой твердости материала;

в) способность противостоять действию электрической дуги и отсутствие привариваемости вследствие большой тугоплавкости;

г) малую подверженность электрической эрозии (т. е. износу с образованием кратеров и наростов в результате местных перегревов и плавления металла).

Недостатками вольфрама как контактного материала являются: а) трудная обрабатываемость; б) образование в атмосферных условиях оксидных пленок; в) необходимость в больших давлениях для обеспе­чения малых значений электрического сопротивления контакта.

Для контактов с большими значениями разрываемой мощности используют металлокерамические материалы. Заготовку прессуют из порошка вольфрама под большим давлением, спекают в атмосфере водорода, получая достаточно прочную, но пористую основу, которую затем пропитывают расплавленным серебром или медью для увеличения проводимости.


Понравилась статья? Добавь ее в закладку (CTRL+D) и не забудь поделиться с друзьями:  



double arrow
Сейчас читают про: