Плазмохимические процессы

Плазмохимические процессы протекают в слабоионизированной, или низкотемпературной, плазме при температуре от 1000 до 10000˚С. Такие процессы характеризуются возбужденным состоянием ионизированных и неионизированных частиц, столкновения которых приводят к очень высокой скорости химических реакций.

В плазмохимических процессах скорость перераспределения химических связей между реагирующими частицами очень высока: длительность элементарных актов химических превращений составляет около 10–13с при почти полном отсутствии обратимости реакции. Такая скорость в обычных заводских реакторах из-за обратимости снижается в тысячи и миллионы раз, поэтому плазмохимические процессы высокопроизводительны.

Производительность метанового плазмохимического реактора – плазмотрона крохотных размеров (длиной 65 см и диаметром 15 см) – составляет 75 т ацетилена в сутки. По производительности такой плазмотрон не уступает огромному заводу. В данном реакторе при температуре 3000–3500°С за одну десятитысячную долю секунды около 80% метана превращается в ацетилен. Степень использования энергии достигает 90–95%, а энергозатраты составляют не более 3 кВт-ч на 1 кг ацетилена. В то же время в паровом реакторе пиролиза метана энергозатраты вдвое больше.

В последнее время разработан эффективный способ связывания атмосферного азота посредством плазмохимического синтеза оксида азота, который гораздо экономичнее традиционного аммиачного способа. Создана плазмохимическая технология производства мелкодисперсных порошков – основного сырья для бурно развивающейся порошковой металлургии. Разработаны плазмохимические методы синтеза карбидов, нитридов, карбонитридов таких металлов, как титан, цирконий, ванадий, ниобий и молибден, при сравнительно небольших энергозатратах –
1–2кВт-ч на 1 кг готовой продукции. Плазмохимические способы промышленного производства многих видов химической продукции отличаются высокой производительностью при сравнительно небольших затратах энергии.

В 70-х годах XX в. созданы плазмохимические сталеплавильные печи, производящие высококачественный металл. Именно таким печам принадлежит будущее в электрометаллургии. Ионно-плазменная обработка рабочей поверхности инструментов позволяет увеличить их износостойкость в несколько раз. В результате подобной обработки можно сформировать, например, пористый рельеф на ровной поверхности. Ионно-плазменное напыление в вакууме широко применяется для формирования элементов микронных размеров современных интегральных схем микроэлектроники.

Методом плазменного напыления можно нанести пористое покрытие со сложной микроструктурой, которая способствует срастанию эндопротеза с костной тканью. Такие покрытия обладают большой удельной поверхностью. С их помощью можно увеличить эффективность катализатора для дожигания выхлопных газов автомобиля. Пористые покрытия, нанесенные на поверхность теплообменников, увеличивают коэффициент теплоотдачи, а пористые керамические покрытия служат надежной защитой от теплопотерь.

Плазмохимия позволяет синтезировать такие ранее неизвестные материалы, как металлобетон, в котором в качестве связующих материалов используются сталь, чугун, алюминий. Металлобетон образуется при сплавлении частиц горной породы с металлом и по прочности превосходит обычный бетон: на сжатие – в 10 раз и на растяжение – в 100 раз.

ЛЕКЦИЯ 7


Понравилась статья? Добавь ее в закладку (CTRL+D) и не забудь поделиться с друзьями:  



double arrow
Сейчас читают про: