Значение трещиностойкости

Содержание арматуры

Общие сведения

ОСНОВНЫЕ СВОЙСТВА ЖЕЛЕЗОБЕТОНА

ЛЕКЦИЯ 4

1. Общие сведения

2. Содержание арматуры

3. Значение трещиностойкости

4. Сцепление арматуры с бетоном

5. Анкеровка арматуры в бетоне

6. Усадка бетона при наличии арматуры

7. Ползучесть бетона при наличии арматуры

8. Коррозия железобетона и меры защиты от неё

9. Защитный слой бетона и минимальные расстояния между стержнями

Введение в бетон стальной арматуры заметно меняет его физико-механические свойства. Эти материалы в железобетоне оказывают положительное влияние друг на друга. Так, например, вследствие сцепления арматуры с бетоном усадка и ползучесть в железобетоне протекают несколько иначе, чем в неармированном бетоне.

Напряженное состояние железобетонных конструкций обуслов­ливается, во-первых, действием внешней нагрузки и, во-вторых, процессом перераспределения внутренних усилий, вызванным тем, что при совместной работе двух материалов арматура становится внутренней связью, препятствующей свободному проявлению усад­ки и ползучести бетона.

Механические свойства железобетона зависят от соответствую­щих свойств бетона и арматуры, но не всегда совпадают с ними.

Например, появление трещин в растянутой зоне бетонной балки при­водит её к разрушению, в то время как для железобетонной балки это, как правило, не опасно. Сжатый стальной элемент при дости­жении предела текучести теряет несущую способность, а в сжатой железобетонной колонне вследствие ползучести бетона при эксплу­атационных нагрузках арматура может быть напряжена на сжатие до предела текучести, а конструкция работает нормально. Из этих примеров видно, что механические свойства железобетона требуют самостоятельного рассмотрения.

Нормами установлены минимальные проценты армирования μsiп для сечений железобетонных элементов. Их величины назначают­ся в зависимости от характера работы элементов и их гибкости и колеблются в пределах от 0,05 до 0,25%. Если μs < μsiп, то кон­струкцию при расчёте следует рассматривать как чисто бетонную. Из экономических соображений процент армирования железобе­тонных конструкций обычно не превышает 2...3%. С изменением μs меняется не только несущая способность элемента, но и его характер разрушения.

Существенным недостатком железобетона является появление тре­щин в растянутых зонах бетона при нагрузках даже ниже эксплуа­тационных. Это объясняется малой растяжимостью бетона.

Между долговечностью и трещиностойкостью железобетонных конструкций существует тесная связь. Поэтому существенно важ­ным является вопрос о том, при каком напряжении в арматуре по­являются первые трещины в растянутом бетоне. Для ответа на него воспользуемся опытными данными о предельной растяжимости, ко­торая составляет в среднем еиbt = 0,00015 = 15-10-5 относительных единиц.

При достаточно хорошем и непрерывном по длине арматуры сцеплении считают, что до появления трещин деформации бетона и арматуры в любой точке по поверхности их контакта равны, т.е.

Следовательно, в момент, предшествующий появлению трещины, арматура и бетон работают совместно и

При таких деформациях арматура любого класса работает ещё упруго и напряжения в ней определяются по закону Гука

 

Если σ s > 30 МПа, то считаем, что в растянутом бетоне появляются трещины. Следовательно, для получения трещиностойкой конструк­ции требуется значительно ограничить использование прочности ар­матуры при растяжении (имеется ввиду обычный железобетон, а не предварительно напряжённый). Например, в арматуре из стали класса A240 для обеспечения трещиностойкости конструкции прихо­дится допускать растягивающие напряжения, составляющие лишь примерно 13% от предела текучести.

Поэтому в обычных железобетонных конструкциях в большин­стве случаев приходится мириться с появлением трещин для того, чтобы повысить степень использования арматуры и иметь возмож­ность применять арматуру более высоких классов. Однако и при этом все равно исключается возможность эффективного использо­вания арматуры из высокопрочных сталей, начиная с класса A600 и выше, так как высокие напряжения, которые в ней можно до­пускать, сопровождаются значительными деформациями, т. е. об­разованием недопустимых по ширине раскрытия трещин. Это очень неприятное обстоятельство, поскольку прочность этих сталей растёт гораздо быстрее, чем стоимость, и их использование с экономиче­ской точки зрения является целесообразным.

Видимые волосяные трещины шириной примерно 0,05 мм появ­ляются в бетоне при нагрузках, меньших эксплуатационных, в зо­нах возникновения наибольших растягивающих напряжений. При возрастании нагрузки эти трещины раскрываются. Приближенно можно считать, что при напряжениях в арматуре порядка σ s = 200...250 МПа ширина раскрытия трещин находится в пределах = 0, 2...0,3 мм. Наличие трещин открывает доступ к армату­ре атмосферной влаге и агрессивным газам, что при определённой ширине раскрытия может вызвать коррозию. Поэтому ширина рас­крытия трещин в период эксплуатации железобетонных конструк­ций должна быть ограничена. Предельно допустимая ширина рас­крытия трещин, при которой еще обеспечивается сохранность арма­туры, устанавливается в зависимости от условий работы конструк­ции, вида применяемой арматуры, продолжительности действия на­грузки и не должна превышать 0,3 мм (считая по оси арматурных стержней) при длительном их раскрытии и 0,4 мм — при непродолжительном. При такой ширине раскрытия трещин напряжения в арматуре достигают примерно σ s = 250...300 МПа.


Понравилась статья? Добавь ее в закладку (CTRL+D) и не забудь поделиться с друзьями:  



double arrow
Сейчас читают про: