Рассмотрим простейшую модель обмена. Участников обмена двое и товаров, которыми они обмениваются, тоже два. Первый участник, как и второй, имеет обоих товаров в каком-то количестве (возможно, что даже в нулевом). Функции полезностей участников
,
. Напомним, что участники хотят обмениваться товарами, в надежде улучшить свое благосостояние. На невыгодный для себя вариант обмена они не пойдут.
Но могут ли участники обмена улучшить свое благосостояние в результате обмена?
Весьма удобной моделью исследования таких обменов в рассматриваемом простейшем варианте (два участника и два вида товаров) является ящик Эджворта. Опишем его.
Обозначим
, суммарное количество i-го товара у обоих участников. Пусть
– начальное, до обмена, количество товаров у первого, тогда у второго их будет
. Рассмотрим прямоугольник на плоскости, одна точка которого есть
, а другая – по диагонали –
, остальные две точки прямоугольника имеют координаты
и
. Предполагается, что обе функции полезности являются строго вогнутыми, а также дифференцируемыми. Это делает выводы более четкими.
Наложим теперь на ящик Эджворта карты предпочтений первого (относительно точки 0) и второго (относительно точки
). На рисунке нанесены две кривые безразличия первого – линии уровня его функции полезности
– ближайшие к точке 0, и две линии безразличия второго – ближайшие к точке
. Две из этих кривых проходят через точку C – кривая CAD для первого и кривая CBD для второго. Вправо и вверх от кривой CAD расположено множество предпочтительности первого
, влево и вниз от кривой CBD расположено множество предпочтительности второго
.
Рассмотрим любую точку
в «линзе» CABD. Легко видеть, что
и
, т.е. любая точка «линзы», лежащая строго внутри нее, т.е. не лежащая на кривых CAD и CBD, строго лучше точки C для каждого участника. Следовательно, оба участника вполне согласятся «перейти» в точку
, т.е. согласятся на обмен: первый отдаст второму
единиц второго товара и получит взамен
единиц первого товара. Но остановятся ли на этом участники? Не найдут ли они еще более хороший вариант обмена?






