Теорема 2.1 (теорема сложения). Вероятность р (А + В) суммы событий А и В равна
Р (А + В) = р (А) + р (В) – р (АВ). (2.2)
Доказательство.
Докажем теорему сложения для схемы случаев. Пусть п – число возможных исходов опыта, тА – число исходов, благоприятных событию А, тВ – число исходов, благопри-ятных событию В, а тАВ – число исходов опыта, при которых происходят оба события (то есть исходов, благоприятных произведению АВ). Тогда число исходов, при которых имеет место событие А + В, равно тА + тВ – тАВ (так как в сумме (тА + тВ) тАВ учтено дважды: как исходы, благоприятные А, и исходы, благоприятные В). Следовательно, вероятность суммы можно определить по формуле (1.1):

что и требовалось доказать.
Следствие 1. Теорему 2.1 можно распространить на случай суммы любого числа событий. Например, для суммы трех событий А, В и С
Р (А + В + С) = р (А) + р (В) + р (С) – р (АВ) – р (АС) – р (ВС) + р (АВС) (2.3)
и т.д.
Следствие 2. Если события А и В несовместны, то тАВ = 0, и, следовательно, вероятность суммы несовместных событий равна сумме их вероятностей:
Р (А + В) = р (А) + р (В). (2.4)
Определение 2.1. Противоположными событиями называют два несовместных события, образующих полную группу. Если одно из них назвать А, то второе принято обозначать
.
Замечание. Таким образом,
заключается в том, что событие А не произошло.
Теорема 2.2. Сумма вероятностей противоположных событий равна 1:
р (А) + р (
) = 1. (2.5)
Доказательство.
Так как А и
образуют полную группу, то одно из них обязательно произойдет в результате опыта, то есть событие А +
является достоверным. Следовательно,
Р (А +
) = 1. Но, так как А и
несовместны, из (2.4) следует, что Р (А +
) = р (А) + р (
). Значит, р (А) + р (
) = 1, что и требовалось доказать.
Замечание. В ряде задач проще искать не вероятность заданного события, а вероятность события, противоположного ему, а затем найти требуемую вероятность по формуле (2.5).
Пример. Из урны, содержащей 2 белых и 6 черных шаров, случайным образом извлека-ются 5 шаров. Найти вероятность того, что вынуты шары разных цветов.
Решение. Событие
, противоположное заданному, заключается в том, что из урны вынуто 5 шаров одного цвета, а так как белых шаров в ней всего два, то этот цвет может быть только черным. Множество возможных исходов опыта найдем по формуле (1.5):

а множество исходов, благоприятных событию
- это число возможных наборов по 5 шаров только из шести черных:

Тогда
а 