Многоступенчатая выборка

Квотная выборка

Квотная выборка — микромодель объекта социологического исследования, формируемая на основе статистических сведений (параметров квот) преимущественно о социально-демографи­ческих характеристиках элементов генеральной совокупности. Нужные данные обычно берут из статистических справочников.

Квотный метод выборки предполагает предварительное нали­чие статистических сведений по ряду существенных либо корре­лирующих с ними характеристик генеральной совокупности. Од­нако эти сведения не используются для определения объема вы­борки, так как в последующем отбор респондентов осуществляется не случайно, а целенаправленно, при помощи интервьюеров.

Принцип квотной выборки, или же принцип отбора единиц на­блюдения по методу квот, восходит к представлению о подобии объектов в случае пропорциональности их структурных элемен­тов. Этот метод основан на целенаправленном формировании структуры выборочной совокупности. Анкетер получает задание опросить некоторое количество лиц определенного возраста, пола, образования и профессии. Удельный вес квоты в выборочной со­вокупности должен соответствовать ее удельному весу в генераль­ной совокупности.

Обычно квотная выборка используется на последних ступенях отбора и завершает процесс районирования (стратифицирования) и применения вероятностных процедур. Социолог разыскивает респондента определенного пола, статуса и возраста в заданном районе и беседует с ним.

Приведем пример расчета выборки по таким параметрам кво­ты, как пол и возраст, в реальном социологическом исследовании.

Так, половозрастная структура населения Советского района выгляде­ла следующим образом (табл. 2.2):

Половозрастная структура населения Советского района

Таблица 2.2

  Всего Мужчины Женщины Мужчины, % Женщины, %
Все население       45,1 54,9
В том числе по возрастам:          
до 1 года       51,4 48,6
1 —6 лет       51,1 48,9
7 —9 лет       50,6 49,4
10-15лет       51,0 49,0
16-19лет       49,8 50,2
20 — 24 года       50,3 49,7
25-29 лет       55,0 45,0
30 — 34 года       48,5 51,5
35 —39 лет       47,3 52,7
40 — 44 года       46,8 53,2
45 —49 лет       45,7 54,3
50 — 54 года       44,3 55,7
55-59 лет       42,0 58,0
60 —69 лет       39,0 61,0
70 лет и старше       20,8 79,2

Квотная выборка — почти обязательный момент в проведении научного эксперимента, если он практикуется в социальных науках.

Отметим, что в реальной практике чаще всего применяется многоступенчатая выборка, построенная с применением процедуры поэтапного отбора объектов опроса. При этом совокупность объектов, отобранных на предыдущем этапе (ступени) становится исходной для отбора на следующем. Соответствен­но различают единицы отбора первой ступени (первичные еди­ницы), единицы отбора второй ступени (вторичные единицы) и т.д. Объекты самой нижней ступени, с которых ведется не­посредственный сбор информации, называются единицами на­блюдения.

К многоступенчатому отбору прибегают в тех случаях, когда генеральная совокупность имеет настолько большой объем, что простой случайный или систематический отбор элементов привел бы к чрезмерному распылению выборки по всей территории. По­просту говоря, такой метод применяют в тех случаях, когда изу­чают достаточно большие группы людей или крупные общности, скажем регион или город.

Многоступенчатая выборка поначалу напоминает огромную воронку, поскольку широкое горлышко (огромную совокупность респондентов или объектов) через ряд процедур сводят к узкой горловине, с которой социолог в конечном итоге и имеет дело.

Расчет объема выборки

Из всех вопросов, которые задают сотрудникам знаменитого Института опросов общественного мнения Гэллапа, самым попу­лярным является такой: как вы можете, проинтервьюировав 1000 человек, судить о том, что думают 250 млн американцев?

Для ответа на этот вопрос нужно упомянуть не только высокую квалификацию и огромный практический опыт сотрудников, но и использование ими статистики и математики. Если методы опроса не основаны на науке, результаты могут ввести вас в заблуждение.

В статистике приняты следующие разграничения объемов вы­борки. Объем выборки, достаточный для взаимопогашения слу­чайностей и получения статистических характеристик закономер­ного характера, равен 30. Выборка такого объема называется ма­лой. Характер распределения значений признака в малых выборках приближается к нормальному с ростом числа испытаний. Мини­мальный объем выборки, позволяющий получить средние значе­ния признака с указанием доверительных вероятностей, равен 5. Выборки такого объема называются сверхмалыми. Распределение значений признака в таких выборках характеризуется распределе­нием Стьюдента. Но чаще всего в социологии имеют дело с го­раздо большим объемом выборки.

При планировании выборочного обследования наступает мо­мент, когда нужно решить, сколько человек опрашивать, т.е. ка­ким должен быть объем выборки. Это решение чрезвычайно важ­но, поскольку слишком большая выборка потребует излишних затрат, а слишком маленькая понизит качество результатов.

Объем выборки — общее число единиц наблюдения, включенных в выбо­рочную совокупность.

Поскольку выборочная совокупность — это часть генеральной совокупности, отобранная с помощью специальных методов, — важно, чтобы эта часть не искажала представления о целом, т.е. репрезентировала его. Социологов, часто проводящих эмпиричес­кие исследования, постоянно волнует вопрос о том, как много надо опрашивать человек, чтобы получить достоверную информа­цию? Институт Гэллапа в США проводит регулярные опросы по национальной выборке объмом 1,5%). Центр «Социо-Экспресо» Института социологии РАН про­водит исследования на выборке объемом в 2 тыс. человек, при этом ошибка выборки не превышает 3%1.

Специалисты считают, что наилучшая выборка — не обязатель­но большая. Конечно, чем больше объем выборки, тем выше точ­ность ее результатов. Однако даже огромная выборка не гаранти­рует успеха, если генеральная совокупность «плохо перемешана», т.е. является неоднородной.

Однородной считается такая совокупность, в которой контролируемый признак распределен равномер-но, не образует пустот или сгущений. В этом случае, опросив не­скольких человек, можно получить точную информацию о распре­делении этого признака в генеральной совокупности.

Таким образом, на репрезентативность данных влияют не ко­личественные характеристики выборочной совокупности (ее объем), а качественные характеристики генеральной совокупнос-ти — степень ее однородности.

В социологии еще не придумано единой и четкой формулы, используя которую можно рассчитать оптимальный объем выбо­рочной совокупности, — такой формулы просто не существует в природе. И объясняется это весьма просто. Дело в том, что опре-деление объема выборочной совокупности — проблема не столько статистическая, сколько содержательная. Иными словами, объем выборочной совокупности зависит от множества факторов, в том числе от целей и задач, теоретической модели, гипотез и методов исследования, степени однородности генеральной совокупности наконец, требующейся точности получаемой информации.

Надо всегда помнить, что каждый процент прироста точности ин-формации в исследовании приводит к резкому увеличению расходов на его проведение. Знаменитый институт Гэллапа, на протяжении многих десятилетий проводящий опросы в США, выявил, что при общенациональной выборке в 100 человек — ошибка выборки будет в пределах ±11%; 200 человек - ±8%; 400 - ±6%; 600 - ±5%; 750 — ±4%; 1000 - ±4%; 1500 - ±3%; 4000 человек - +2%. Именно поэто-му он проводит общенациональные опросы в США на выборке в 1500-2000 человек. Как видно, он предпочитает увеличение ошибки на 1% многократному увеличению стоимости исследования.

Стратегия предварительного расчета состоит в том, что объем выборки определяется до проведения основного исследования. В наиболее простом случае можно воспользоваться уже наработан­ным опытом, например, института Гэллапа, где используется объем выборки приблизительно в 1500—2000 человек. Для средне­статистического отечественного исследования объема выборки — примерно 400—600 человек.

Для расчета объема случайной выборки надо знать желаемую точность оценивания, величину риска получаемого ответа и сте­пень изменчивости ответа. Традиционно точность оценивания принимают за 5%, а величину риска — за 0,95. Иными словами, если по данным выборочного исследования 60% опрошенных удовлетворены работой, то можно утверждать, что в генеральной совокупности доля удовлетворенных составит от 55 до 65% в 95% случаев, а в 5% случаев такая доля может выйти за этот интервал. Если исходить из 5%-ной точности и величины риска в 0,95, объем выборки будет следующим (табл. 2.4).

Таблица 2.4 Зависимость объема выборки от объема генеральной совокупности

Объем генеральной совокупности                 Бесконечная
Объем выборки                  

Результаты, приведенные в табл. 2.4, свидетельствуют против Распространенного заблуждения, будто бы объем выборки — жестко фиксированный процент от генеральной совокупности, рав-ный 10. На самом же деле эта величина — не постоянная, а пере-менная, изменяющаяся в конкретных условиях.


Понравилась статья? Добавь ее в закладку (CTRL+D) и не забудь поделиться с друзьями:  




Подборка статей по вашей теме: