Мультипроцессоры

Классификация вычислительных систем

Одним из наиболее распространенных способов классификации ЭВМ является систематика Флинна (Flynn), в рамках которой основное внимание при анализе архитектуры вычислительных систем уделяется способам взаимодействия последовательностей (потоков) выполняемых команд и обрабатываемых данных. При таком подходе различают следующие основные типы систем:

· SISD (Single Instruction, Single Data) – системы, в которых существует одиночный поток команд и одиночный поток данных. К такому типу можно отнести обычные последовательные ЭВМ;

· SIMD (Single Instruction, Multiple Data) – системы c одиночным потоком команд и множественным потоком данных. Подобный класс составляют многопроцессорные вычислительные системы, в которых в каждый момент времени может выполняться одна и та же команда для обработки нескольких информационных элементов; такой архитектурой обладают, например, многопроцессорные системы с единым устройством управления. Этот подход широко использовался в предшествующие годы (системы ILLIAC IV или CM-1 компании Thinking Machines), в последнее время его применение ограничено, в основном, созданием специализированных систем;

· MISD (Multiple Instruction, Single Data) – системы, в которых существует множественный поток команд и одиночный поток данных. Относительно этого типа систем нет единого мнения: ряд специалистов считает, что примеров конкретных ЭВМ, соответствующих данному типу вычислительных систем, не существует и введение подобного класса предпринимается для полноты классификации; другие же относят к данному типу, например, систолические вычислительные системы или системы с конвейерной обработкой данных;

· MIMD (Multiple Instruction, Multiple Data) – системы c множественным потоком команд и множественным потоком данных. К подобному классу относится большинство параллельных многопроцессорных вычислительных систем.

Рис. 1.4. Классификация многопроцессорных вычислительных систем

Следует отметить, что хотя систематика Флинна широко используется при конкретизации типов компьютерных систем, такая классификация приводит к тому, что практически все виды параллельных систем (несмотря на их существенную разнородность) оказываются отнесены к одной группе MIMD. Как результат, многими исследователями предпринимались неоднократные попытки детализации систематики Флинна. Так, например, для класса MIMD предложена практически общепризнанная структурная схема (см. [24, 75]), в которой дальнейшее разделение типов многопроцессорных систем основывается на используемых способах организации оперативной памяти в этих системах (см. рис. 1.4). Такой подход позволяет различать два важных типа многопроцессорных систем – multiprocessors (мультипроцессоры или системы с общей разделяемой памятью) и multicomputers (мультикомпьютеры или системы с распределенной памятью).

Для дальнейшей систематики мультипроцессоров учитывается способ построения общей памяти. Первый возможный вариант – использование единой (централизованной) общей памяти (shared memory) (см. рис. 1.5 а). Такой подход обеспечивает однородный доступ к памяти (uniform memory access или UMA) и служит основой для построения векторных параллельных процессоров (parallel vector processor или PVP) и симметричных мультипроцессоров (symmetric multiprocessor или SMP). Среди примеров первой группы - суперкомпьютер Cray T90, ко второй группе относятся IBM eServer, Sun StarFire, HP Superdome, SGI Origin и др.

Рис. 1.5. Архитектура многопроцессорных систем с общей (разделяемой) памятью: системы с однородным (а) и неоднородным (б) доступом к памяти

Одной из основных проблем, которые возникают при организации параллельных вычислений на такого типа системах, является доступ с разных процессоров к общим данным и обеспечение, в связи с этим, однозначности (когерентности) содержимого разных кэшей (cache coherence problem). Дело в том, что при наличии общих данных копии значений одних и тех же переменных могут оказаться в кэшах разных процессоров. Если в такой ситуации (при наличии копий общих данных) один из процессоров выполнит изменение значения разделяемой переменной, то значения копий в кэшах других процессоров окажутся не соответствующими действительности и их использование приведет к некорректности вычислений. Обеспечение однозначности кэшей обычно реализуется на аппаратном уровне – для этого после изменения значения общей переменной все копии этой переменной в кэшах отмечаются как недействительные и последующий доступ к переменной потребует обязательного обращения к основной памяти. Следует отметить, что необходимость обеспечения когерентности приводит к некоторому снижению скорости вычислений и затрудняет создание систем с достаточно большим количеством процессоров.

Наличие общих данных при параллельных вычислениях приводит к необходимости синхронизации взаимодействия одновременно выполняемых потоков команд. Так, например, если изменение общих данных требует для своего выполнения некоторой последовательности действий, то необходимо обеспечить взаимоисключение (mutual exclusion), чтобы эти изменения в любой момент времени мог выполнять только один командный поток. Задачи взаимоисключения и синхронизации относятся к числу классических проблем, и их рассмотрение при разработке параллельных программ является одним из основных вопросов параллельного программирования.

Общий доступ к данным может быть обеспечен и при физически распределенной памяти (при этом, естественно, длительность доступа уже не будет одинаковой для всех элементов памяти) (см. рис. 1.5 б). Такой подход именуется неоднородным доступом к памяти (non-uniform memory access или NUMA). Среди систем с таким типом памяти выделяют:

· системы, в которых для представления данных используется только локальная кэш-память имеющихся процессоров (cache-only memory architecture или COMA); примерами являются KSR-1 и DDM;

· системы, в которых обеспечивается когерентность локальных кэшей разных процессоров (cache-coherent NUMA или CC-NUMA); среди таких систем: SGI Origin 2000, Sun HPC 10000, IBM/Sequent NUMA-Q 2000;

· системы, в которых обеспечивается общий доступ к локальной памяти разных процессоров без поддержки на аппаратном уровне когерентности кэша (non-cache coherent NUMA или NCC-NUMA); например, система Cray T3E.

Использование распределенной общей памяти (distributed shared memory или DSM) упрощает проблемы создания мультипроцессоров (известны примеры систем с несколькими тысячами процессоров), однако возникающие при этом проблемы эффективного использования распределенной памяти (время доступа к локальной и удаленной памяти может различаться на несколько порядков) приводят к существенному повышению сложности параллельного программирования.


Понравилась статья? Добавь ее в закладку (CTRL+D) и не забудь поделиться с друзьями:  



double arrow
Сейчас читают про: