IX. Механические передачи вращательного движения

Рис. VIII. 4

При расчетах концентраторы оцениваются с помощью эффективного коэффициента концентратора напряжений k σ, определяемым пределом выносливости σ -1 образца детали без концентраторов напряжения и пределом выносливости σ ΄-1 образца с концентраторами напряжений:

.

2. Частота обработки поверхности – сочетание выступов и впадин на поверхности детали, которое представляет собой изначальные трещины, которые при циклическом нагружении развиваются, что приводит к более раннему износу детали. Поэтому в реальном проектировании наиболее ответственные места шлифуются. В практике проектирования фактор шероховатости оценивается экспериментально:

,

где εσ – коэффициент влияния шероховатости;

σ ΄-1 – предел выносливости реальной шероховатой детали;

σ -1 – предел выносливости полированного образца.

3. Габаритность детали.

Практика показывает, что в при больших габаритах детали большая вероятность появления и развития внутренних дефектов. Так, большие заготовки для валов гидротурбин изготавливаются тщательнее, вследствие того, что чаще всего в них встречаются дефекты.

Для оценки габаритности детали вводят коэффициент габаритности βσ:

,

где σ ΄-1 – предел выносливости реального габарита детали;

σ -1 – предел выносливости образца.

При расчете детали машины на усталостную прочность учитываются все эти коэффициенты, при этом вводится общий коэффициент запаса прочности n, определяемый пределом выносливости σ -1 материала данной детали и эквивалентным напряжением σэкв:

.

Среднее значение коэффициента запаса прочности n определяется коэффициентами запаса прочности при изгибе nσ и nτ – при кручении:

Эквивалентное напряжение σэкв, в свою очередь, учитывает параметры циклических нагружений – амплитуду нагружения σа и среднее напряжение σm детали:

,

где ψ – коэффициент, учитывающий влияние цикла на структуру материала детали.

Усталость – опасное явление, поэтому все машины рассчитываются на выносливость. При этом расчет ведется в два этапа: оценивается статическая прочность проектируемой детали (на основании чего определяются геометрические характеристики детали), после чего проводится расчет на усталостную прочность уже для готовой конструкции.

В биомеханике вращательное движение практически не встречается, в основном преобладают возвратно-поступательные механизмы с шарнирными сочленениями. В технике вращательное движение используется весьма широко, а именно – при передачи механической энергии (движения) от двигателя к исполнительному органу машины или прибора, а так же для преобразования видов движения, моментов и усилий в передаточных механизмах (устройствах). Примером передаточного механизма может послужить привод механического перемешивающего устройства (Рис. IX. 1), состоящий из двигателя 1, передаточного устройства 3 и исполнительного механизма 4 со своим рабочим органом, соединенных с помощью муфт 2.

Рис. IX. 1

Приводом оборудования называется сочетание двигателя и передаточного устройства. Назначение двигателя сводится к превращению одного вида энергии в другой. Так, двигатель внутреннего сгорания превращает потенциальную энергию топлива в механическую энергию выходного вала, электродвигатель преобразует электрическую энергию – в механическую.

Любое передаточное устройство характеризуется мощностью двигателя Nдв:

,

где Мк – передаваемый крутящий момент;

ω – угловая скорость двигателя, рассчитываемая по формуле:

,

а так же эффективностью передачи энергии, оцениваемой коэффициентом полезного действия (КПД) η:

.

Следует иметь в виду, что при наличии в схеме устройства муфт, опор или редукторов КПД рассчитывается с учетом коэффициентов полезного действия в этих устройствах:

,

где η 1 – КПД муфты;

η 2 – КПД опоры;

k – число опор;

η 3 – КПД редуктора;

l – число ступеней редуктора.

Основным кинематическим параметром передаточного механизма является передаточное отношение и – отношение угловых скоростей вала ω1 и редуктора ω 2:

.

Редуктор – закрытая зубчатая передача, служащая для уменьшения числа оборотов вала. Очень часто в механике используются закрытые зубчатые передачи, служащие для увеличения числа оборотов – мультипликаторы.

В зависимости от типа звена, передающего вращающий момент, механические передачи подразделяются на несколько видов, основными и наиболее употребляемыми из которых являются:

- фрикционные передачи;

- передачи с гибким тяговым органом;

- зубчатые передачи.


Понравилась статья? Добавь ее в закладку (CTRL+D) и не забудь поделиться с друзьями:  



double arrow
Сейчас читают про: