История развития мониторов

Лекция 5 Устройства вывода графической информации

Цветовая модель CIE Lab

Цветовая модель Grayscale

Цветовая модель Grayscale представляет собой ту же индексированную палитру, где вместо цвета пикселам назначена одна из 256 градаций серого. На основе Grayscale легко можно понять строение RGB- и CMYK-файлов.

В RGB для описания цвета используются 24 бита, которые делятся на три группы по 8 бит (то, что называется в Photoshop'е каналами). Одна группа используется для хранения в пикселе величины красного цвета, две другие – зеленого и синего. Они могут дать до 16 700 000 комбинаций оттенков. Аналогичным образом в CMYK существуют 4 группы, для описания цвета используются 32 bpp. Alpha-каналы, быстрая маска, маски слоев в Photoshop'е имеют совершенно сходную 8-битовую природу, но носят вспомогательный характер и не влияют на цвет. Обращу внимание, что если RGB имеет стандартные 256 градаций яркости, то в CMYK яркость измеряется в процентах (то есть до 100). Несмотря на большую, чем в RGB цветовую глубину в 32 бита на пиксел, диапазон оттенков CMYK значительно меньше, чем в RGB, так как CMYK является не более, чем имитацией на экране печатных цветов.

В 1920 году была разработана цветовая пространственная модель CIE Lab (Communication Internationale de I'Eclairage – международная комиссия по совещанию. L, a, b - обозначения осей координат в этой системе). Система является аппаратно независимой и потому часто применяется для переноса данных между устройствами. В модели CIE Lab любой цвет определяется светлотой (L) и хроматическими компонентами: параметром а, изменяющимся в диапазоне от зеленого до красного, и параметром b, изменяющимся в диапазоне от синего до желтого. Цветовой охват модели CIE Lab значительно превосходит возможности мониторов и печатных устройств, поэтому перед выводом изображения, представленного в этой модели, его приходится преобразовывать. Данная модель была разработана для согласования цветных фотохимических процессов с полиграфическими. Цветовое пространство LAB представляет цвет в трех каналах: один канал выделен для значений яркости (L – Lightnes) и два других – для цветовой информации (А и В). Цветовые каналы соответствуют шкале, а не какому-нибудь одному цвету. Канал А представляет непрерывный спектр от зеленого к красному, в то время как канал В – от синего к желтому. Средние значения для А и В соответствуют реальным оттенкам серого.

Существует похожая цветовая модель YCC, используемая в форматах Kodak Photo CD и FlashPix.


До пятидесятых годов компьютеры выводили информацию только на печатающие устройства. Интересно отметить, что достаточно часто компьютеры тех лет оснащались осциллографами, которые, однако, использовались не для вывода информации, а всего лишь для проверки электронных цепей вычислительной машины. Впервые в 1950 году в Кембриджском университете (Англия) электронно-лучевая трубка осциллографа была использована для вывода графической информации на компьютере EDSAC (Electronic Delay Storage Automatic Computer).

Примерно полтора года спустя английский ученый Кристофер Стретчи написал для компьютера "Марк 1" программу, игравшую в шашки и выводившую информацию на экран. Однако это были лишь отдельные примеры, не носившие серьезного системного характера.

Реальный прорыв в представлении графической информации на экране дисплея произошел в Америке в рамках военного проекта на базе компьютера "Вихрь". Данный компьютер использовался для фиксации информации о вторжении самолетов в воздушное пространство США.

Первая демонстрация "Вихря" состоялась 20 апреля 1951 года - радиолокатор посылал информацию о положении самолета компьютеру, и тот передавал на экран положение самолета-цели, которая отображалась в виде движущейся точки и буквы T (Target). Это был первый крупный проект, в котором электронно-лучевая трубка использовалась для отображения графической информации.

Первые мониторы были векторными (рис 2) - в мониторах этого типа электронный пучок создает линии на экране, перемещаясь непосредственно от одного набора координат к другому.

Соответственно нет необходимости разбивать в подобных мониторах экран на пикселы. Позднее появились мониторы с растровым сканированием. В мониторах подобного типа электронный пучок сканирует экран слева направо и сверху вниз, пробегая каждый раз всю поверхность экрана. Следующей ступенькой развития мониторов явилось цветное изображение, для получениякоторого требуется уже не один, а три пучка, каждый из которых высвечивает определенные точки на поверхности дисплея. Подробнее об этом типе мониторов мы поговорим при рассмотрении принципа работы современных цветных CRT-мониторов. Со временем помимо CRT-мониторов появились и другие технологии, которые позволили создавать более компактные и легкие экранные панели.


Понравилась статья? Добавь ее в закладку (CTRL+D) и не забудь поделиться с друзьями:  



double arrow
Сейчас читают про: