Микророботы, нанороботы. На протяжении последних десяти лет непрерывно производились попытки сконструировать микророботов для лечения определенных заболеваний. Так, в 2002 г. Ishiyama et al. разработали микроразмерные вращающиеся винтовые структуры, движение которых в кровотоке обеспечивалось магнитным полем. Эти микророботы предназначались для доставки лекарственных веществ в инфицированную ткань и даже для проникновения в опухоли с целью их термической деструкции. В 2003 г. была предпринята попытка использовать магнитные поля различной интенсивности для обеспечения направленного движения в организме человека микроробота, содержащего ферромагнитные частицы. В 2005 г. эти попытки увенчались успешным созданием микророботов, имевших размер около 200 мкм, которые могли быть введены в просвет сосуда через иглу. Эти микророботы эффективно перемещались по водному лабиринту за счет помещения по внешнее магнитное поле, причем различные частоты поля приводили к селективной активации определенных частей робота, обеспечивая контроль его функций.
|
|
|
Однако принципиально иной уровень функционирования устройств этого типа может быть достигнут при переходе на наномасштаб. Это станет возможным после разработки молекулярных аналогов современных подшипников и шестерней. Для создания таких нанороботов будет применяться методика позиционной сборки. В макромире аналогом этого процесса является автоматизированная сборочная линия автозавода, где каждый робот выполняет строго заданную манипуляцию.
На сегодняшний день мы располагаем ограниченными данными о возможном применении подобных нанороботов в практической медицине. Один из немногих завершенных проектов посвящен созданию респироцита — искусственного эритроцита, состоящего из 18 миллионов четко структурированных атомов. Респироцит представляет собой сферический сосуд из алмазоподобного материала, имеющий 1 мкм в диаметре и выдерживающий давление в 1000 атмосфер. Способность этого наноробота к переносу кислорода в 256 раз превышает аналогичную способность эритроцита.
Другой пример наноробота, выполняющего функцию естественной клетки человеческого организма – искусственный фагоцит. Такого рода наноробот также предназначен для циркуляции в кровотоке и фагоцитоза патогенных вирусов, бактерий и грибов. По прогнозам создателей, введение в кровоток искусственных фагоцитов может приводить к полному уничтожению патогенных микроорганизмов в течение нескольких часов.

Молекулярная шестерня (слева) и искусственный фагоцит (справа)
Большие надежды возлагаются на применение нанороботов в хирургии. При этом нанороботы также вводятся в кровоток и затем осуществляют поиск пораженной ткани и коррекцию дефектов за счет манипулирования на наноуровне.
|
|
|
Нанооболочки. Одним из примеров использования наноструктур для направленной доставки лекарственных препаратов являются нанооболочки. В отличие от углеродных наночастиц, нанооболочки представляют собой несколько более крупные частицы, состоящие из кремнеземной сердцевины и тонкого золотого покрытия. Нанооболочки покрываются слоем полимера, содержащего лекарственный препарат, и вводятся в организм. После накопления частиц в пораженной ткани (например, в опухоли) производится облучение данной области инфракрасным лазером. Это приводит к селективному поглощению нанооболочками инфракрасных частот и их нагреванию. Нагрев поверхности частицы приводит к высвобождению лекарства из слоя полимера и обеспечивает его локальное действие.






