Изверженные (первичные) 2. Осадочные (вторичные) 3. Метаморфические (видоизмененные)

Список использованной литературы

Заключение

По СП 11-105-97 сделаем вывод о категории сложности инженерно-геологических условий строительной площадки.

По геоморфологическим условиям площадка относится к I (простой) категории сложности, так как находится в пределах оного геоморфологического элемента.

По геологическим условиям в сфере взаимодействия здания и сооружения с геологической средой участок имеет II (средняя сложность) категории сложности, так как имеется не более четырех различных по литологии слоев, залегающих наклонно и с вклиниванием (D1). Мощность изменяется закономерно. Свойства грунтов существенно изменяются в плане и по глубине. Скальные грунты (известняк трещиноватый) имеют неровную кровлю и перекрыты нескальными грунтами.

По гидрогеологическим факторам в сфере взаимодействия здания и сооружения с геологической средой участок имеет II категорию сложности, так как имеется два выдержанных горизонта подземных вод, обладающих напором и содержащих загрязнение.

По специфическим грунтам в сфере взаимодействия здания и сооружения с геологической средой участок имеет II категорию сложности, так как имеет ограниченное или не оказывают существенное влияние на выбор проектных решений.

По техногенным воздействиям и изменениям освоенных территорий площадка относится к III категории сложности, так как они оказывают сщественное влияние на выбор проектных решений и осложняют производство инженерно-геологических изысканий в части увеличения их состава и объема работ. К ним относится суффозионный вынос и прорыв дна котлована напорными водами.

К необходимым защитным мероприятиям можно отнести внимательный подбор состава цемента (для защиты от разрушения фундаментов зданий и сооружений грунтовыми водами) и тщательный контроль за производством инженерно-геологических изысканий и строительных работ в условиях суффозионного выпора и возможного прорыва дна котлована напорными грунтовыми водами.


1. Ананьев В.П., Потапов А.Д. Инженерная геология. М., 2000.

2. Гавич И.К. и др. Сборник задач по общей гидрогеологии. М., 1985.

3. Руководство по производству и приемке работ при устройстве оснований и фундаментов. М., 1977.

4. Солодухин М.А., Архангельский И.В. Справочник техника-геолога по инженерно-геологическим и гидрогеологическим работам. М., 1982.

5. СП 11-105-97. Свод правил для инженерных изысканий в строительстве. М., 1998.

6. Зеленкова Н.И., Челнокова В.А. Оценка гидрогеологических условий площадки строительства. СПб., 2003.

Изверженные породы образовались непосредственно из магмы (расплавленной массы преимущественно силикатного состава), в результате ее охлаждения и застывания. В зависимости от условий застывания различают глубинные и излившиеся горные породы.
Глубинные возникли в результате постепенного остывания магмы при высоком давлении внутри земной коры. В этих условиях составляющие магмы кристаллизовались, благодаря чему образовались массивные плотные породы с полнокристаллической структурой: граниты, сиениты, лабрадориты и габбро. Излившиеся породы образовались в результате вулканического извержения магмы, которая быстро остывала на поверхности при низкой температуре и давлении. Времени для образования кристаллов было недостаточно, поэтому породы этой группы имеют скрыто или мелкокристаллическую структуру и большую пористость: порфиры, базальты, вулканические туфы, пеплы и пемзы.

Осадочные горные породы называют вторичными, поскольку они образовались в результате разрушения изверженных пород или из продуктов жизнедеятельности растений и животных организмов. Один из способов формирования этих горных пород – химические осадки, образующиеся в процессе высыхания озер и заливов. В результате в осадок выпадают различные соединения, которые со временем превращаются в травертин, доломит. Общая особенность этих пород – пористость, трещиноватость, растворяемость в воде. К обломочным осадочным породам относятся сцементированные отложения (песчаники, брекчии, конгломераты) и рыхлые (пески, глины, гравий и щебень). Сцементированные отложения образовались из рыхлых. Например, песчаник – из кварцевого песка с известковым цементом, брекчия – из сцементированного щебня, а конгломерат – из гальки. Еще известны породы органического происхождения – известняки и мел. Они образуются в результата жизнедеятельности животных организмов и растений. Метаморфические породы образовались путем превращения изверженных и осадочных горных пород в новый вид камня под воздействием высокой температуры, давления и химических процессов. Среди метаморфических пород различают массивные (зернистые), к которым относятся мрамор и кварциты, а также сланцеватые – гнейсы и сланцы.

ГОСТ 25100-95 Настоящий стандарт распространяется на все грунты и устанавливает их классификацию, применяемую при производстве инженерно-геологических изысканий, проектировании и строительстве.Дополнительные наименования и характеристики грунтов не должны противоречить классификации, приведенной в настоящем стандарте, и должны основываться на частных классификациях отраслевого и регионального назначения, установленных соответствующими нормативными документами.

В настоящем стандарте грунт рассматривается как однородный по составу, строению и свойствам элемент грунтового массива (образец).

9. Образование подземных вод, их классификация по условиям залегания, виды подземных вод, химический состав

Подземные воды находятся в верхней части земной коры (литосферы). Наука о подземных водах называется гидрогеология. Она изучает распространение, происхождение, физические и химические свойства, законы движения подземных вод. В природе наблюдается малый и большой круговорот воды. Малый круговорот происходит по схеме – море-атмосфера-море; большой круговорот: море – атмосфера – суша - море.
Осадки, выпавшие на сушу, делятся на три части: 1) испарение, 2) сток и 3) просачивание (инфильтрация) в почву. Образование подземных вод возможно четырьмя способами:
1) за счет инфильтрации осадков в литосферу образуется основная часть подземных вод (в том числе, минеральные воды КМВ),
2) за счет конденсации паров в порах грунта (подземная роса ночью в пустынях),
3) седиментационная вода одновременно с отложением морских осадков (например, остаток морской воды в глинистых толщах сармата и майкопа г. Ставрополя),
4) т.н. ювенильные воды, выделяемые магмой.
Классификация подземных вод по условиям залегания. В геологическом разрезе по условиям залегания можно выделить следующие подземные воды:

1почвенные воды, находящиеся в почвенном слое,
2) верховодка образуется над местным водоупором весной или за счет техногенной утечки воды,
3) грунтовые воды на первом от поверхности водоупоре, безнапорные, могут быть загрязнены,
4) межпластовые (ненапорные и напорные- артезианские) воды.
Виды подземных вод. В зависимости от состояния в грунтах выделяют следующие виды воды:
1) ^ Парообразная вода - водяной пар в порах грунта с относительной влажностью W=100%, движение происходит в сторону падения температуры. Таким путем летом в подпольях может быть накопление влаги.
2) Прочносвязанная (адсорбированная, гигроскопическая) вода. Это слой до 10-15 молекул Н2О толщиной 0,1 микрона, покрывающий грунтовые (глинистые) частицы, не растворяет соли, неэлектропроводна, не замерзает при 0оС, а при отрицательных температурах около минус 100оС, имеет высокую вязкость, удаляется при Т≥105о. Содержание прочносвязанной воды зависит в основном от количества глинистых частиц: в песках – 1-2%, в суглинках – 5-10 %, в глинах – 10-25%, в высокодисперсных монтмориллонитовых глинах – до 30 %.
3) Рыхлосвязанная (пленочная) вода удерживается электрическими силами до Р=70000g, имеет плотность=1,0, температуру замерзания минус 1-3-5оС, слабо растворяет соли, перетекает от толстых к тонким пленкам. Обладает большим расклинивающим действием (Рраскл), вызывает набухание глинистых грунтов при увеличении толщины пленок этой связанной воды, при ее удалении (сушке) происходит усадка глинистого грунта, обеспечивает пластичность глин. Для определения количества пленочной влаги разработаны специальные методы (центрифуги, влагоемких сред, высоких колонн).
4) ^ Свободная водакапиллярная и гравитационная. Капиллярная вода удерживается в порах капиллярными силами, перемещается за счет разности капиллярных давлений, растворяет соли, замерзает при температуре ниже 0ºС. Высота капиллярного поднятия в глинах достигает 3-4 м, в песках – несколько дм.
^ Гравитационная вода перемещается под действием силы тяжести (разности напоров).
5) Вода в твердом состоянии (лед), замерзает сначала свободная вода, а затем последовательно все остальные виды воды.
6) Кристаллизационная вода участвует в построении кристаллической решетки минералов (гипс CaSO4∙2H2O). ^ Химически связанная вода входит в состав минералов (лимонит Fe2O3·nH2O, опал SiO2∙H2O, гидроксид CaО·Н2O). Эти формы влаги удаляются при Т>100оС.

10 Динамика подземных вод. Основной закон движения подземных вод (закон Дарси).
Подземные воды в большинстве случаев находятся в движении. Потоки грунтовых вод могут быть плоскими, радиально расходящимися и сходящимися, криволинейными. Направление потока грунтовых вод можно определить методом трех скважин или по карте гидроизогипс – линий с равными абсолютными отметками зеркала грунтовых вод (аналогично горизонталям рельефа). Карта гидроизогипс позволяет решить следующие вопросы: 1) определить направление и уклон грунтовых вод, 2) установить связь грунтовых и поверхностных вод, 3) выбрать площадку для строительства и дренажа. Скорость движения (фильтрации) подземных вод характеризуется законом Дарси (1856 г.), который проводил свои опыты в трубке, заполненной песком и установил, что «Количество воды Q, прошедшее через какое-либо сечение F в единицу времени, пропорционально площади сечения и гидравлическому градиенту I, равному разности напоров ΔH = Н1 –Н2, отнесенной к длине пути L»:
Q = КфF ΔH / L = КфF I,
где Q – расход воды или количество фильтрующей воды в единицу времени, м3/ сут; Кф – коэффициент фильтрации, м/сут; F – площадь поперечного сечения потока, м2; ΔH – разность напоров, м; L – длина пути фильтрации, м.
По этой же формуле можно определить приток воды к реке.
Закон Дарси действует только при ламинарном движении грунтовых вод в суглинках, песках, галечниках, где турбулентный (вихревой) характер наблюдается редко.
Разделив обе части уравнения на площадь F и обозначив Q/F=V – скорость фильтрации, м/сутки, получаем: V=KфI, при I=1,0, Кф= V м/сутки.
Эта скорость движения воды фиктивная, т.к. отнесена ко всему сечению потока. Фактически движение воды происходит только через поровое пространство. Действительная скорость Vд определяется по формуле: Vд=Q/F·n, где n – пористость в д.е. Vд=V/n.

12 Карст – процесс растворения и размыва поверхностными и подземными водами растворимых трещиноватых пород с образованием отрицательных форм рельефа и различных пустот в глубине. К карстующимся породам относятся известняки и доломиты, гипс, ангидрит, соли. По условиям залегания различают открытый карст – карстующиеся породы выходят на поверхность; закрытый карст - карстующиеся породы перекрыты сверху нерастворимыми породами. Поверхностные формы карста представлены каррами, понорами, карстовыми воронками, котловинами, подземные – карстовыми каналами, шахтами и пещерами. В пещерах формируются сталактиты и сталагмиты. На активизацию или замедление карстовых процессов влияют много­численные природные и техногенные факторы, удельная роль которых в разных комплексах пород, структурах, гидрогеологических условиях и климатических зонах различна. Наибольший интерес представляют те компоненты среды и действующие факторы, которые так активизи­руют карстовые процессы, что возникает опасность для сооружений и затрудняется использование территории. К ним относятся:

1) неоднородность литологического строения и состава карстую­щихся пород, наличие в них нерастворимых слоев и примесей, текстурные особенности;

2) трещиноватость массива пород (литогенетическая, тектоничес­кая, экзогенная и иная), ее интенсивность и пространственное распространение;

3) тектонические структуры — складчатые и особенно разрывные, определяющие пути движения основных потоков подземных вод;

4) новейшая геологическая история района, характер и интенсив­ность неотектонических движений, обусловливающих формиро­вание рельефа и положение местных и региональных базисов дренирования подземных вод;

5) рельеф карстовых районов, наличие покрова четвертичных гли­нистых пород и растительности, влияющих на поверхностный, сток и инфильтрацию атмосферных осадков:

6) климатогидрологические факторы, отражающиеся на гидрогео­логической обстановке карстующихся массивов пород;

7) техногенные факторы, разнообразные по характеру влияния, интенсивности и последствиям, изменяющие уровни и режим подземных вод, их состав, агрессивность и водообмен.

13 Под суффозией (от лат. suffossio — подкапывание, подрывание) понимают процесс выщелачивания, выноса мелких минеральных частиц и растворимых веществ водой, фильтрующейся в толще рыхлых пород. Этот процесс вызывает оседание всей вышележащей толщи с образованием на земной поверхности мелких и крупных замкнутых понижений (блюдец, западин, воронок, провалов и т.п.) диаметром до 10, редко до 100—500 м. Суффозия часто сопровождает карстовые процессы в закрытом типе карста, формируя карстово-суффозионные воронки и провалы, но может протекать и как самостоятельный процесс. Для предупреждения суффозии наиболее часто применяют такие меры, которые оказывают влияние на уменьшение градиен­тов и скоростей фильтрационного потока. Поэтому снижают уровни подземных вод дренажами в опасных участках; с целью уменьшения градиентов потока устраивают шпунтовые огражде­ния и противофильтрациоыные завесы для увеличения длины пути фильтрации потока или полного ограждения от него защищаемого участка. Для уменьшения выходных градиентов и скоростей подземного потока в зоне его разгрузки часто устраивают обратные фильтры, т. е. отсыпку водопроницаемых пород слоями в порядке постепенного возрастания размера частиц от мелких к крупным в направлении фильтрационного потока.


Понравилась статья? Добавь ее в закладку (CTRL+D) и не забудь поделиться с друзьями:  



double arrow
Сейчас читают про: