Вероятность в непрерывном случае

Теоретическая дисперсия дискретной случайной переменной

Правила расчета математического ожидания

Существуют три правила, которые часто используются. Эти правила практически самоочевидны, и они одинаково применимы для дискретных и непрерывных случайных переменных.

Правило 1. Математическое ожидание суммы нескольких переменных равно сумме их математических ожиданий. Например, если имеются три случайные переменные, и, то

. (A.4)

Правило 2. Если случайная переменная умножается на константу, то ее математическое ожидание умножается на ту же константу. Если – случайная переменная и – константа, то

. (A.5)

Правило 3. Математическое ожидание константы есть она сама. Например, если – константа, то

. (A.6)

Следствие из трех правил:

.

Независимость случайных переменных

Две случайные переменные и называются независимыми, если

(A.7)

для любых функций и. Из независимости следует как важный частный случай, что.

Теоретическая дисперсия является мерой разброса для вероятностного распределения. Она определяется как математическое ожидание квадрата разности между величиной и ее средним, т.е. величины, где – математическое ожидание. Дисперсия обычно обозначается как или, и если ясно, о какой переменной идет речь, то нижний индекс может быть опущен:

. (A.8)

Из можно получить – среднее квадратическое отклонение – столь же распространенную меру разброса для распределения вероятностей; среднее квадратическое отклонение случайной переменной есть квадратный корень из ее дисперсии.

Мы проиллюстрируем расчет дисперсии на примере с одной игральной костью. Поскольку, то в этом случае равно. Мы рассчитаем математическое ожидание величины, используя схему, представленную в табл. A.5. Дополнительный столбец представляет определенный этап расчета. Суммируя последний столбец в табл. I.5, получим значение дисперсии, равное 2,92. Следовательно, стандартное отклонение () равно, то есть 1,71.

Таблица A.5

         
         
  1/6 –2,5 6,25 1,042
  1/6 –1,5 2,25 0,375
  1/6 –0,5 0,25 0,042
  1/6 0,5 0,25 0,042
  1/6 1,5 2,25 0,375
  1/6 2,5 6,25 1,042
Всего 2,92

Одним из важных приложений правил расчета математического ожидания является формула расчета теоретической дисперсии случайной переменной, которая может быть записана как

. (A.9)

Это выражение иногда оказывается более удобным, чем первоначальное определение. Доказательство предоставляется читателю в качестве упражнения.

С дискретными случайными переменными очень легко обращаться, поскольку они по определению принимают значения из некоторого конечного набора. Каждое из этих значений связано с определенной вероятностью, характеризующей его «вес». Если эти «веса» известны, то не составит труда рассчитать теоретическое среднее (математическое ожидание) и дисперсию.

Вы можете представить указанные «веса» как определенные количества «пластичной массы», равные вероятностям соответствующих значений. Сумма вероятностей и, следовательно, суммарный «вес» этой «массы» равен единице. Это показано на рис. A.1 для примера, где величина есть сумма очков, выпавших при бросании двух игральных костей. Величина принимает значения от 2 до 12, и для всех этих значений показано количество соответствующей «массы».


Понравилась статья? Добавь ее в закладку (CTRL+D) и не забудь поделиться с друзьями:  



double arrow
Сейчас читают про: