Экономическое обоснование управленческих решений по повышению качества продукции

Основы технических измерений

Метрология – наука об измерениях, методах и средствах обеспеченияих единства и способах достижения требуемой точности. Ее делят на:

1. Общую, которая в свою очередь включает:

- теоретическую – занимается вопросами фундаментальных исследований, созданием системы единиц измерений, физических постоянных, разработкой новых методов измерений;

- экспериментальную – занимается вопросами создания эталонов, образцов мер, разработкой новых измерительных приборов, устройств и информационных систем;

2. Законодательная метрология включает комплекс взаимосвязанных и взаимообусловленных общих правил, а также другие вопросы, регламентация и контроль которых необходим со стороны государства для обеспечения единства измерений и единообразия средств измерения (СИ).

Задачи метрологического обеспечения:

- создание и применение эталонов единиц физических величин;

- определение и уточнение физических констант и физико-химических свойств веществ и материалов;

- создание и выпуск образцовых средств измерения;

- разработка и применение стандартных методов, средств и схем проверки измерительных приборов;

- проведение государственных испытаний разработанных и импортируемых средств измерений;

- государственному надзору и ведомственному контролю состояния и применением средств измерений.

Измерения – совокупность операций по применению технического средства, хранящего единицу физической величины, заключающихся в сравнении измеряемой величины с ее единицей.

Измерения бывают:

- по точности – равноточные (измерения одинаковыми по точности СИ и в одних и тех же условиях) и неравноточными;

- по числу измерений – однократные и многократные;

- по отношению к изменению измеряемой величины – статические и динамические;

- по выражению результатов измерений – абсолютные и относительные;

- по общим приемам получения результатов измерений – прямые и косвенные.

Измерения являются основой научных знаний, служит для учета материальных ресурсов, обеспечения качества продукции, совершенствования технологии, охраны здоровья, обеспечения безопасности труда и для многих областей деятельности.

Главные функции измерений:

1. Учет продукции народного хозяйства, исчисляющейся по массе, длине, объему, расходу, мощности, энергии.

2. Измерения, проводимые для контроля и регулирования технологических процессов (особенно в автоматизированных производствах) и для обеспечения нормального функционирования транспорта и связи.

3. Измерения физических величин, технических параметров, состава и свойств веществ, проводимые при научных исследованиях, испытаниях и контроле продукции в различных отраслях.

Измерения делятся на:

- технические – это измерения с помощью рабочих СИ с целью контроля параметров изделий, технологических процессов, для диагностики заболеваний, контроля загрязнения окружающей среды и др.;

- метрологические – измерения с помощью эталонов, образцовых средств измерения с целью воспроизводства единиц физических величин для передачи их размеров рабочим СИ.

По числу измерений в ряду измерений: однократные и многократные.

По отношению к изменению измеряемой величины: статические (измерение неизменной во времени физической величины) и динамические (измерение изменяющейся по размеру физической величины, например, переменного тока).

По выражению результатов измерений – абсолютные и относительные.

По общим приемам получения результатов измерений – прямые и косвенные (когда результат определяется на основании результатов прямых измерений других физических величин).

Средство измерения – это техническое средство (или его комплекс), используемое при измерениях и имеющее нормированные метрологические характеристики. В отличие от индикаторов СИ не только обнаруживают физические величины, но и измеряют ее, то есть сопоставляют неизвестный размер с известным. Для облегчения сопоставления на стадии изготовления прибора фиксируют на шкале деления в кратном и дольном отношении, что называют градуировкой шкалы.

По конструктивному исполнению СИ подразделяют на:

1. Меры физических величин – СИ, предназначенные для воспроизводства или хранения физической величины одного или нескольких заданных размеров. Меры бывают однозначные (гиря, калибр) и многозначные (набор гирь). Набор мер, объединенных в единое устройство, называют магазином мер. Сравнение с мерой выполняют с помощью специальных средств – компараторов (рычажные весы, измерительный мост и т.д.).

2. Измерительные преобразователи – **

Метрологические характеристики средств измерения характеризуют свойства средств измерения, влияющие на результат измерений или их погрешность.

Обычно метрологические характеристики нормируют раздельно для нормальных и рабочих условий применения средств измерения.

Нормальные, когда изменением характеристик под влиянием внешних факторов принято пренебрегать. Для многих средств измерения нормальными являются: температура (293 ± К˚); атмосферное давление (100 ± 4) кПа: относительная влажность (65 ± 15)%; электрическое напряжение 220 В ± 10%.

Рабочие условия – более широкий диапазон изменения влияющих величие. Основные метрологические характеристики: диапазон измерений, Порог чувствительности – наименьшее изменение измеряемой величины, которое вызывает заметное изменение входного сигнала.

Погрешность – разность между показаниями средства измерения и истинным (действительным) значением измеряемой величины. В качестве действительного значения для рабочих средств измерения принимают показатели образцового средства измерения, для образцового = – эталонного. Погрешность образцового значительно меньше и при сличении ею часто пренебрегают.

Основная погрешность средства измерения – погрешность, определяемая в нормальных условиях его применения.

– абсолютная погрешность.

- относительная погрешность.

Класс точности средства измерения – обобщающая характеристика, выраженная пределами допускаемых погрешностей. Его обозначают числом (римской или арабской цифрой).

Погрешность проверяемого средства измерения:

При однократном измерении ошибка может быть выявлена при сопоставлении результата с априорным представлением о нем или путем логического анализа. Измерения повторяют для устранения причины ошибки. При многократном измерении одной и той же величины ошибки проявляются в том, что результаты отдельных измерений заметно отличаются от остальных. Если отличие велико, ошибочный результат необходимо отбросить.

Объектом измерений является физическая величина. Физическая величина применяется для описания материальных систем, объектов, явлений, процессов и т.п., изучаемых в любых науках.

Существуют основные и производные физические величины. Основные – характеризуют фундаментальные свойства материального мира. В механике их 3, в теплотехнике – 4, физике – 7. ГОСТ 8.417 устанавливает семь основных физических величин (длина, масса, время, термодинамическая температура, количество вещества, сила света, сила тока) и две дополнительные (плоский и телесный углы).

Измеряемые величины имеют количественную и качественную характеристики.

Формализованным отражением качественного различия измеряемых величин является их размерность. В соответствии с ISO 31/0 размерность обозначается символом dim (от латинского dimension – размерность). Размерность основных физических величин – длины, массы, времени обозначаются соответственно:

. (8.1)

Размерность производной величины выражается через размерности основных физических величин с помощью степенного одночлена.

, (8.2)

где - показатели размерности (степени).

Каждый показатель размерности может быть положительным или отрицательным, дробным или целым, равным 0. Если все показатели размерности равны нулю, то ее называют безразмерной.

Значение физической величины получают в результате ее измерения или вычисления в соответствии с основными уравнениями измерения.

Более совершенна шкала отношений – пример температурная шкала Кельвина, где начало отсчета абсолютный 0 (273,16º), а вторая реперная точка таяние льда.

В зависимости от того, на какие интервалы разбита шкала – размеры представляются по-разному (1 м=100 см=1000 мм). Отмеченные варианты – это значения измеряемой величины – оценки физической величины в виде некоторого числа принятых для нее единиц. Число называется числовым значением.

Значение физической величины получают в результате ее измерения или вычисления в соответствии с основным уравнением измерения:

Q=X[Q], (8.3)

где Q – значение физической величины;

X -числовое значение;

[Q] – выбранная для измерения единица.

Между качеством продукции и качеством измерений существует непосредственная связь. Качество измерений – это совокупность свойств состояния измерений, обуславливающих получение результатов измерений с требуемой точностью, в необходимом виде и в установленный срок.

Исследование влияния погрешности измерений на технико-экономические показатели производства – важнейшая задача в экономике метрологии.

Воздействие погрешности измерений на качество продукции часто завуалировано и возникающие при этом экономические потери достаточно сложно обнаружить.

При исследовании влияния точности измерений на технико-экономические показатели рассматривают всю метрологическую цепочку. Показатель потерь от погрешности измерений включает в себя три слагаемых:


, (8.1)

где По- экономические потери от ложной браковки эталонов, возникающие за счет непосредственных расходов на настройку, регулировку и повторную аттестацию эталонов;

Пр – экономические потери от ложной браковки рабочих средств измерений (РСИ), проявляющиеся в виде непроизводственных потерь на их ремонт, настройку, проверку;

Пнх – народнохозяйственные потери.

, (8.2)

где Nо – количество эталонов, подвергаемых аттестации;

nо – вероятность фиктивной браковки эталонов при аттестации;

Сорем – средние непроизводственные затраты на ремонт, регулировку и повторную аттестацию одного фиктивно забракованного эталона.

Аналогичный подход применяется при рассмотрении потерь на других уровнях.

Суммарные потери от погрешностей измерений по схеме Псх:

, (8.3)

где Nрси – количество РСИ, подвергаемых проверке в течение года;

прси – средняя вероятность фиктивной браковки РСИ при их проверке годными эталонами;

Срсирем – средние непроизводительные затраты на ремонт, регулировку и повторную проверку одного фиктивного забракованного РСИ;

Nпр – годовой объем контролируемой продукции;

ппр – средняя вероятность фиктивной браковки при контроле продукции годным РСИ;

mпр – средняя вероятность пропуска бракованной продукции при контроле годными РСИ;

Спррем – средние непроизводительные затраты, связанные с фиктивной браковкой единицы продукции;

Ппр – средние годовые потери, связанные с использованием или применением единицы бракованной продукции.

Основными факторами, влияющими на результат измерения, являются:

- степень изученности объекта измерения;

- субъективизм, привносимый в результат измерения экспертом или экспериментатором (квалификация, санитарно-гигиенические условия, психофизическое состояние, эргонометрические требования при учете взаимодействий оператора со средствами измерения и т.д.). Степень субъективизма должна быть сведена к минимуму.

- способ измерения;

- аддитивные и мультипликативные поправки;

- возмущающий фактор – влияние СИ на измеряемую величину;

- условия измерения (температура среды, влажность; атмосферное давление, напряжение в сети и т.д.).

Появление ошибок вызвано недостаточной надежностью системы, в которую входит оператор, объект измерения, СИ и окружающая среда.

Основной нормативный документ, регулирующий метрологическую деятельность Закон РФ «Об обеспечении единства измерений» и международный стандарт ISO 10012–1:1992 о подтверждении метрологической пригодности измерительного оборудования.

Государственная система обеспечения единства измерений регламентируется Законом РФ «Об обеспечении единства измерений». Конкретные положения в области законодательной метрологии регламентируются нормативными документами – стандартами, методическими указаниями, инструкциями, правилами и др.

Комплекс нормативных, нормативно-технических и методических документов межотраслевого уровня, устанавливающих правила, нормы, требования, направленные на достижение и поддержание единства измерений в стране при требуемой точности составляет государственную систему обеспечения единства измерений (ГСИ).

В ГСИ выделяют базовые стандарты, устанавливающие общие требования, правила и нормы, а также стандарты, охватывающие конкретную область или вид измерений.

Базовые стандарты:

1) ГОСТ 8.414 ГСИ «Единицы физических величин»;

2) ГОСТ 16363 «Метрология. Термины и определения».

Базовые стандарты можно подразделять на группы в зависимости от объекта стандартизации: эталоны физических величин; передача информации о размере единицы от эталонов средствам измерений; порядок нормирования метрологических характеристик средств измерения; правила выполнения и оформления результатов средств измерений; единообразие средств измерения; метрологический надзор за разработкой, состоянием и применением средств измерений и т.п.

Повышение качества товара позволяет улучшить финансовое состояние предприятия (чем выше качество, тем выше цена) за счет увеличения прибыли предприятия. У потребителя главными критериями является качество товара, его цена и затраты на использование. Эти особенности проявления эффективности в сферах производства и потребления товара требует применения различных методик расчета экономического эффекта. Ниже приведены 4 метода расчета экономического эффекта в результате повышения качества товара.

Методика 1. Мероприятия по повышению качества сырья, материалов, комплектующих изделий, получаемых изготовителем товара («вход системы»).

Экономический эффект от данных мероприятий рассчитывается по формуле:

, (9.1)

где Эт – ожидаемый экономический эффект от мероприятий (качества «входа системы»);

D Ствхt – перерасход из-за роста себестоимости единицы товара в году t за счет приобретения более качественного сырья, материалов и комплектующих (дополнительные расходы на повышение качества «входа»);

D Стпрt – снижение себестоимости единицы товара в году t за счет повышения качества «входа»;

ЦТНt -прогноз цены нового товара (после мероприятий) в году t;

ЦТСt - то же старого;

NTt – прогноз объема выпуска данного товара в году t (в натуральных единицах);

Звх – единовременные затраты (инвестиции) на повышение качества «входа».

Методика 2. Мероприятия по повышению качества процесса в системе (по совершенствованию технологии, организации производства, оперативного управления и т.п.)

Экономический эффект у изготовителя товара определяется по формуле:


, (9.2)

где Эт – ожидаемый экономический эффект;

Т – срок применения мероприятий;

i=1,2…n – количество наименований выпускаемых товаров, на которые распространяются мероприятия;

ЦТit - прогноз цены i -го товара в году t;

СТit - прогноз себестоимости единицы i -го товара в году t;

НТit - прогноз налогов по единице i -го товара в году t;

NТit - прогноз объема выпуска i -го товара в году t;

tвл=1,2…Твл – год вложения инвестиций в мероприятия по повышению качества процессов в системе (Твл – последний год вложений);

Зпрt - единовременные затраты (инвестиции) в году tвл .

Методика 3. Ожидаемый экономический эффект от разработки и внедрения мероприятия по повышению качества товара (производительности, надежности, экологичности и др.) определяется по формуле:

, (9.3)

где Эт – ожидаемый экономический эффект повышения качества товара за нормативный срок его службы;

tc = 1,2…Tc – срок действия мероприятий;

Эcont - сопутствующий экологический или социальный эффект в денежном выражении от использования товара повышенного качества;

Зkt - единовременные затраты (инвестиции) в повышении качества товара, включая затраты на ликвидацию элементов основных производственных фондов в связи с освоением и внедрением нового товара (если при ликвидации получается прибыль, то она вычитается из Зк).

Методика 4. Ожидаемый экономический эффект от приобретения потребителем нового товара – орудия труда, с помощью которого им выпускается продукция, определяется по формуле:

, (9.4)

где Эт – ожидаемый экономический эффект от приобретения потребителем нового товара (орудия труда) – за нормативный срок его службы (Т);

Цnit - прогноз цены i -й продукции, выпускаемой с применением нового товара в году t;

Сnit - прогноз себестоимости единицы i -й продукции в году t;

Нnit - прогноз доли налогов по единице i -й продукции в году t;

Пit - прогноз полезного эффекта (производительности) нового товара по i -й продукции в году t;

tc = 1,2…Tc – срок действия мероприятий;

ЗТt - инвестиции на покупку единицы товара (его транспортирование, монтаж, пуск, строительство ремонтной базы, подготовку кадров для обслуживания, создание оборотного фонда запасных частей и других единовременных затрат, включая затраты (экономию) на ликвидацию элементов старых основных производственных фондов, выводимых в связи с освоением нового товара в году их вложения tвл.

Если ввод нового товара у потребителя изменяет экологические или социальные параметры внешней среды, то они учитываются аналогично формуле (7.3) при условии, что параметры по этому товару не хуже, чем по старому.

В общем виде сопутствующий экологический или социальный эффект от внедрения нового товара определяется по формуле:

ЭconTt = (Рсnt - Рнтt) Cедрt, (9.5)

где Рсnt - экологический или социальный показатель старого товара в году t в натуральном выражении;

Рнтt – то же нового товара;

Cедрt – стоимостная оценка единицы показателя Р.

При выполнении расчетов по формулам (9.1) – (9.5) обязательно следует учитывать фактор времени через коэффициент дисконтирования (в дальнейшем при расчетах процентная ставка дисконтирования применяется равной 0,1).


Понравилась статья? Добавь ее в закладку (CTRL+D) и не забудь поделиться с друзьями:  



double arrow
Сейчас читают про: