Вопрос № 10 и 11

Рассмотрим вопросы, связанные со структурой локальной области знания.

Очевидно, что здесь можно выделить по крайней мере два уровня:

уровень эмпирических знаний и уровень теоретических знаний.

На конкретном примере — механике — выясним, что представляют собой уровни эмпирического и теоретического знания.

Эмпирия здесь связана с наблюдениями и экспериментами над механическими перемещёниями твердых тел или жидкостей. Совокупность эмпирических данных дают нам также астрономические наблюдения за перемещениями небесных тел — и это очень важные знания, на которые опирается механика. В свое время Пуанкаре говорил, что самое большое благо, которое принесла астрономия человечеству, заключается в том, что, глядя на небо, люди поняли, что все в мире подчиняется законам и что перемещение небесных тел — это самое очевидное проявление закономерности окружающей нас действительности.

Для знаний, полученных на эмпирическом уровне, характерно то, что они являются результатом непосредственного контакта с живой реальностью в наблюдении или эксперименте. На этом уровне мы получаем знания об определенных событиях, выявляем свойства интересующих нас объектов или процессов, фиксируем отношения и, наконец, устанавливаем эмпирические закономерности.

Над эмпирическим уровнем науки всегда надстраивается теоретический уровень.

Теория, представляющая этот уровень, строится с явной направленностью на объяснение объективной реальности (главная задача теории заключается в том, чтобы описать, систематизировать и объяснить все множество данных эмпирического уровня).

Однако теория строится таким образом, что она описывает непосредственно не окружающую действительность, а идеальные объекты.

Механика, например, описывает не реальные процессы, с которыми человек непосредственно имеет дело в действительности, а относящиеся к идеальным объектам, например материальным точкам.

Идеальные объекты в отличие от реальных характеризуются не бесконечным, а вполне определенным числом свойств. Материальные точки, с которыми имеет дело механика, обладают очень небольшим числом свойств, а именно массой и возможностью находиться в пространстве и времени.

Таким образом, идеальный объект строится так, что он полностью интеллектуально контролируется.

В теории задаются не только идеальные объекты, но и взаимоотношения между ними, которые описываются законами. Кроме того, из первичных идеальных объектов можно конструировать производные объекты.

В итоге теория, которая описывает свойства идеальных объектов, взаимоотношения между ними, а также свойства конструкций, образованных из первичных идеальных объектов, способна описать все то многообразие данных, с которыми ученый сталкивается на эмпирическом уровне.

Происходит это следующим образом: из исходных идеальных объектов строится некоторая теоретическая модель данного конкретного явления и предполагается, что эта модель в существенных своих сторонах, в определенных отношениях соответствует тому, что есть в действительности.

Уточним теперь наши представления о теоретическом уровне знания. Важно иметь в виду, что этот уровень знания обычно расчленяется на две существенные части, представляемые фундаментальными теориями и

теориями, которые описывают конкретную (достаточно большую) область реальности, базируясь на фундаментальных теориях.

Так, механика описывает материальные точки и взаимоотношения между ними, а на основе ее принципов далее строят различные конкретные теории, описывающие те или иные области реальности.

Для описания поведения, например, небесных тел строится небесная механика. При этом Солнце представляет собой центральное тело, обладающее большой массой, а планеты — тела движущиеся вокруг этого центрального тела по законам механики и по закону всемирного тяготения.

Эта конкретная модель строится из материальных точек и рассчитывается исходя из принципов механики. Таким же образом — на базе механики — строятся и другие конкретные теории: твердого тела, жидкости и т.д. Часто при построении таких теорий удается обойтись только принципами механики, однако при построении, например, теории тепловых явлений в конце концов выясняется, что принципов и законов механики недостаточно, что нужны еще вероятности, представления.

Важно еще раз отметить, что в теории мы всегда имеем дело с идеальным объектом: в фундаментальных теориях — с наиболее абстрактным идеальным объектом, а в теориях второго поколения — определенными производными от этих идеальных объектов, на основе которых конструируются модели конкретных явлений действительности.

Роль теории в науке определяется тем, что в ней мы имеем дело с интеллектуально контролируемым объектом, в то время какна эмпирическом уровне с реальным объектом, обладающим бесконечным количеством свойств и интеллектуально не контролируемым..

Поскольку в теории мы имеем дело с интеллектуально контролируемым объектом, то мы можем описать теоретический объект как угодно детально и получить в принципе сколь угодно далекие следствия из теоретических представлений. Коль скоро наши исходные абстракции верны, мы можем быть уверены, что и следствия из них будут верны. Сила теории состоит в том, что она может развиваться как бы сама по себе, без прямого контакта с действительностью. Естественно, что исходные принципы должны соотноситься с действительностью.

Итак, в структуре научного знания выделяются два существенно различных, но взаимосвязанных уровня: эмпирический и теоретический

Но чтобы адекватно описать локальную область знания, этих двух уровней оказывается недостаточно. Необходимо выделить часто не фиксируемый, но очень существенный уровень структуры научного знания — уровень философских предпосылок, содержащий общие представления о действительности и процессе познания, выраженные в системе философских понятии.

Научными методами эмпирического исследования являются наблюдение– целенаправленное восприятие явлений действительности (связанное с их описанием и измерением), сравнение и эксперимент, где происходит активное вмешательство в протекание изучаемых процессов.

Среди научных методов теоретического исследования чаще всего выделяют формализацию, аксиоматический и гипотетнко-дедуктнвнЫй методы.''

1. Формализация –отображение содержательного знания в знаковом формализме (формализованном языке). Последний создается для точного выражения мыслей с целью исключения возможности для неоднозначного понимания. При формализации рассуждения об объектах переносятся в плоскость оперирования со знаками (формулами). Отношения знаков заменяют собой высказывания о свойствах и отношениях предметов. Формализация играет существенную роль в уточнении научных понятий. Она может проводиться с разной степенью полноты, но, как показал Гедель, в теории всегда останется неформализуемый остаток, т. е. ни одна теория не может быть полностью формализована. Формальный метод–даже при последовательном его проведении–не охватывает всех проблем логики научного познания (на что уповали логические позитивисты). 2. Аксиоматический метод– способ построения научной теории, при котором в ее основу кладутся некоторые 1гсходые положения–аксиомы (постулаты), из которых все остальные утверждения этой теории выводятся из них чисто логическим путем, посредством доказательства. Для вывода теорем 'из аксиом (н вообще одних формул из других) формулируются специальные правила вывода.

3. Гипотетико-дедуктивный метод– способ теоретического.исследования, сущность которого заключается в создании системы дедуктивно связанных между собой гипотез, из которых в конечном счете выводятся утверждения об эмпирических фактах. Тем самым этот метод основан на выведении (дедукции) заключений из гипотез и других посылок, истинностное значение которых неизвестно. А это значит, что заключение, полученное на основе данного метода, неизбежно будет иметь лишь вероятностный характер. Обычно гипотетико-дедуктивный метод связан с системой гипотез разного уровня общности и разной близости к эмпирическому базису. Данный метод ориентирован на описание прежде всего формальной структуры “готового знания” и его форм в отвлечении от их генезиса и развития. Разновидностью гипотетико-дедуктивного метода является метод математической гипотезы..

В научном исследовании широко используются так на-зываемые общелогическае методы и приемы исследования. Среди них можно выделить следующие:

1. Анализ– реальное или мысленное разделение объекта на составные часта, и синтез–их объединение в единое целое.

2. Абстрагирование– процесс отвлечения от ряда свойств и отношений изучаемого явления с одновременным выделением интересующих исследователя свойств.

3. Идеализация– мыслительная процедура, связанная с образованием абстрактных (идеализированных) объектов, принципиально не осуществимых в действительности (“точка”, ^идеальный газ”, “абсолютно черное тело” и т. п.). Данные объекты не есть “чистые фикции”, а весьма сложное н очень опосредованное выражение реальных процессов. Они представляют собой некоторые предельные случаи последних, служат средством их анализа и построения теоретических представлений о них. Идеализация тесно связана с абстрагированием и мысленным экспериментом.

4. Индукция– движение мысли от единичного (опыта, фактов) к общему (их обобщением в выводах) и дедукция– восхождение процесса познания от общего к единичному.

5.. Аналогия (соответствующее, сходство) ~ установление сходства в некоторых сторонах, свойствах и отношениях между нетождественными объектами. 'На основании выявленного сходства делается соответствующий вывод–умозаключение по аналогии. Его общая схема: объект В обладает признаками а, в, с, д; объект С Обладает признаками в, с, д; следовательно, объект С, возможно, обладает признаком а. Тем самым аналогия дает не достоверное, а вероятное знание.

6. Моделирование– метод исследования определенных объектов путем воспроизведения их характеристик на другом объекте–модели, которая представляет собой аналог того или иного фрагмента действительности (вещного или мыслительного)–оригинала модели. Между моделью и объектом, интересующим исследователя, должно существовать известное подобие (сходство)–в физических характеристиках, структуре, функциях и др. Формы моделирования весьма разнообразны. Например, предметное (физическое) и знаковое. Важной формой последнего является математическое (компьютерное) моделирование.

7. Системный подход–совокупность общенаучных методологических принципов (требований), в основе которых лежит рассмотрение объектов как систем. К числу этих требований относятся:

1) выявление зависимости каждого элемента от его места и функций в системе с учетом того, что свойства целого несводимы к сумме свойств его элементов;

2) анализ того, насколько поведение системы обусловлено как особенностями ее отдельных элементов, так и свойствами ее структуры;

3) исследование механизма взаимодействия системы и среды;

4) изучение характера иерархичности, присущего данной системе;

5) обеспечение всестороннего многоаспектного описания системы;

6) рассмотрение системы как динамичной, развивающейся целостности.


Понравилась статья? Добавь ее в закладку (CTRL+D) и не забудь поделиться с друзьями:  



double arrow
Сейчас читают про: