Работа расширения и pv-диаграмма для изображения работы

Работа в термодинамике, так же как и в механике, определяется произведени­ем действующей на рабочее тело силы на путь ее действия. Рассмотрим газ массой М и объемом V, заключенный в эластичную оболочку с поверхностью F (рисунок 2.1). Если газу сообщить некоторое количество теплоты, то он будет расширяться, совершая при этом работу против внешнего давления р, оказываемого на него средой. Газ дей­ствует на каждый элемент оболочки dF с силой, равной pdF и, перемещая ее по нормали к поверхности на расстояние dn, совершает элементарную работу pdFdn.

Рис. 2.1 – К определению работы расширения

Общую работу, совершенную в течение бесконечно малого процесса, получим, интегрируя данное выражение по всей поверхности F оболочки:

.

Из рисунок 2.1 видно, что изменение объема dV выражается в виде интеграла по поверхности: , следовательно

δL = pdV. (2.14)

При конечном изменении объема работа против сил внешнего давления, называе­мая работой расширения, равна

. (2.15)

Из (2.14) следует, что δL и dV всегда имеют одинаковые знаки:

если dV > 0, то и δL > 0, т.е. при расширении работа тела положительна, при этом тело само совершает работу;

если же dV < 0, то и δL< 0, т. е. при сжатии работа тела отрицательна: это означает, что не тело совершает работу, а на его сжатие затрачивается работа извне.

Единицей измерения работы в СИ яв­ляется джоуль (Дж).

Отнеся работу расширения к 1 кг массы рабочего тела, получим

l = L/M; δl = δL/М = pdV/M = pd(V/M) = pdv. (2.16)

Величина l, представляющая собой удельную работу, совершаемую систе­мой, содержащей 1 кг газа, равна

. (2.17)

Поскольку в общем случае р – вели­чина переменная, то интегрирование воз­можно лишь тогда, когда известен закон изменения давления p = p(v).

Формулы (2.14) – (2.16) справедливы только для равновесных процессов, при которых давление рабочего тела равно давлению окружающей среды.

В термодинамике для исследования равновесных процессов широко исполь­зуют рv – диаграмму, в которой осью аб­сцисс служит удельный объем, а осью ординат – давление. Поскольку состоя­ние термодинамической системы опреде­ляется двумя параметрами, то на рv – диаграмме оно изображается точкой. На рисунке 2.2 точка 1 соответствует начально­му состоянию системы, точка 2 – конеч­ному, а линия 12 – процессу расшире­ния рабочего тела от v1 до v2.

При бесконечно малом изменении объема dv площадь заштрихованной вертикальной полоски равна pdv = δl, следовательно, работа процесса 12 изо­бражается площадью, ограниченной кри­вой процесса, осью абсцисс и крайними ординатами. Таким образом, работа из­менения объема эквивалентна площади под кривой процесса в диаграмме рv.

Рис. 2.2 – Графическое изображение работы в рv – координтах

Каждому пути перехода системы из состояния 1 в состояние 2 (например, 12, 1а2 или 1b2) соответствует своя работа расширения: l1b2>l1a2>l12 Следова­тельно, работа зависит от характера термодинамического процесса, а не явля­ется функцией только исходного и ко­нечного состояний системы. С другой стороны, ∫pdv зависит от пути интегри­рования и, следовательно, элементарная работа δl не является полным диффе­ренциалом.

Работа всегда связана с перемеще­нием макроскопических тел в простран­стве, например перемещением поршня, деформацией оболочки, поэтому она ха­рактеризует упорядоченную (макрофизическую) форму передачи энергии от од­ного тела к другому и является мерой переданной энергии.

Поскольку величина δl пропорцио­нальна увеличению объема, то в качестве рабочих тел, предназначенных для пре­образования тепловой энергии в механи­ческую, целесообразно выбирать такие, которые обладают способностью значи­тельно увеличивать свой объем. Этим качеством обладают газы и пары жидко­стей. Поэтому, например, на тепловых электрических станциях рабочим телом служат пары воды, а в двигателях внут­реннего сгорания – газообразные про­дукты сгорания того или иного топлива.

2.4 Работа и теплота

Выше отмечалось, что при взаимодействии термодинамической системы с окружающей средой происходит обмен энергией, причем один из способов ее передачи – работа, а другой – теплота.

Хотя работа L и количество теплоты Q имеют размерность энергии, они не являются видами энергии. В отличие от энергии, которая является параметром состояния системы, работа и теплота зависят от пути перехода системы от одного состояния в другое. Они представляют две формы передачи энергии от одной системы (или тела) к другой.

В первом случае имеет место макрофизическая форма обмена энергией, которая обусловлена механическим воздействием одной системы на другую, сопровождаемым видимым перемещением дру­гого тела (например, поршня в цилиндре двигателя).

Во втором случае осуществлена микрофизическая (т.е. на моле­кулярном уровне) форма передачи энергии. Мера количества пе­реданной энергии – количество теплоты. Таким образом, работа и теплота – энергетические характеристики процессов механическо­го и теплового взаимодействия системы с окружающей средой. Эти два способа передачи энергии эквивалентны, что вытекает из зако­на сохранения энергии, но неравноценны. Работа может непосред­ственно преобразовываться в теплоту – одно тело передает при тепловом контакте энергию другому. Количество же теплоты Q непосредственно расходуется только на изменение внутренней, энергии системы. При превращении теплоты в работу от одного тела – источника теплоты (ИТ) теплота передается другому – рабо­чему телу (РТ), а от него энергия в виде работы передается третьему телу – объекту работы (ОР).

Следует подчеркнуть, что если мы записываем уравнение термодинамики, то входящие в уравнения L и Q означают энергию, полученную соответственно макро– или микрофизическим спосо­бом.


Понравилась статья? Добавь ее в закладку (CTRL+D) и не забудь поделиться с друзьями:  



double arrow
Сейчас читают про: