Уравнение Данила Бернулли для потока реальной жидкости

Энергетический баланс потока жидкости определяется уравнением Даниила Бернулли, впервые выведенного им в 1738 г. для элементарной струйки идеальной жидкости (т.е. не имеющей вязкости) при установившемся движении.

В последующем на основании работ как Д.Бернулли, так и других ученых (Л. Эйлера, Г. Кориолиса, Ж. Буссинеска и др.), это уравнение было сформировано для целого потока реальной жидкости, однако в истории науки оно известно как уравнение Даниила Бернулли. Для составления энергетического баланса рассмотрим поток, проходящий по трубопроводу переменного сечения от живого сечения к живому сечению (рис. 25).

hw

Рис. 25. Графическое изображение уравнения Д. Бернулли для потока реальной жидкости при установившемся движении:

1 - поток; 2 - пьезометр; 3 - трубка Пито; 4 - линия полной энергии;

- плоскость сравнения.

Рассмотрим полную удельную энергию в сечениях относительно плоскости сравнения с учетом ранее полученного уравнения (69):

Полная удельная энергия потока в сечении :

(70)

Полная удельная энергия потока в сечении :

, (71)

Показания пьезометров и скоростных трубок, установленных в сечениях и , демонстрируют, что .

Это вызвано тем, что часть энергии потока расходуется на преодоление гидравлических сопротивлений при движении жидкости от одного сечения к другому.

Величина называется удельной потерей энергии (или потерей напора) и обозначается . Отсюда на основании закона сохранения энергии запишем следующее уравнение

(72)

Полученное выражение и называется уравнением Бернулли для потока реальной жидкости.

Влияние вязкости жидкости приводит к неравномерному распределению скоростей в поперечном сечении потока (трубопровода). Поэтому уравнение (72) перепишется в следующем виде:

, (73)

где - коэффициент, характеризующий неравномерность распределения скоростей в поперечном сечении потока (коэффициент Кориолиса).

Значение коэффициента Кориолиса находится в пределах в зависимости от режима движения жидкости.

Каждая составляющая уравнения Бернулли имеет геометрический и энергетический смысл.

Все члены уравнения (73) имеют линейную размерность, и каждый из них может называться высотой:

- геометрическая высота, или высота положения,
- пьезометрическая высота;
- высота скоростного напора;
- высота потерь напора.

Сформулируем геометрический смысл уравнения Бернулли для потока реальной жидкости.

При установившемся потоке реальной жидкости сумма четырех высот (высота положения, пьезометрическая высота, высота скоростного напора и высота потерь напора) есть величина постоянная для любого сечения потока.

Энергетический смысл уравнения Бернулли заключается в следующем: при установившемся потоке реальной жидкости сумма четырех удельных энергий (энергии положения, энергии давления, кинетической энергии и энергии потерь) остается неизменной для любого сечения потока.

Уравнение Бернулли является основным уравнение гидродинамики, с помощью которого выводятся расчетные формулы для различных случаев движения жидкости, и решается большое количество практических задач равномерного движения жидкости в трубах и открытых руслах.

Для решения этих задач используют два основных уравнения гидродинамики:

1) уравнение Бернулли

, (74)

2) уравнение неразрывности потока

, (75)

При решении задач обычно по длине потока выбирают два характерных поперечных сечения (и ). Горизонтальная плоскость сравнения , как правило, выбирается по оси трубопровода. При этом сечения выбираются с таким расчетом, чтобы для одного из них были известны величины , и , а для другого – одна или две из них были неизвестны и подлежали определению.

Взаимосвязь между тремя параметрами: скоростью, давлением и живым сечением послужила основой для конструирования различных гидравлических и пневматических машин, устройств и приспособлений, получивших широкое применение в технике.


Понравилась статья? Добавь ее в закладку (CTRL+D) и не забудь поделиться с друзьями:  



double arrow
Сейчас читают про: