Многочисленные исследования изменения структуры поверхности твердых тел при пластической деформации свидетельствуют о том, что пластическая деформация происходит путем послойного смещения одной части кристалла относительно другой. Аналогичным образом деформируется колода карт при сдвиге (рис.12). Несколько позже было установлено, что сдвиг осуществляется по плотноупакованным плоскостям и в плотноупакованных направлениях.
Эти данные позволили Я.И. Френкелю оценить теоретическую прочность кристаллов исходя из предположения, что под действием механических напряжений атомы в узлах кристаллической решетки одновременно смещаются вдоль плотноупакованных плоскостей в плотноупакованных направлениях. Проведенные расчеты показали, что теоретическая прочность существенно превышает реальную прочность. Это обстоятельство позволило Френкелю предположить, что в металлах имеются легко подвижные дефекты - дислокации. На основании предположения Френкеля Тейлором, Орованом и Поляни была предложена геометрическая модель такого дефекта и начата разработка теории дислокаций. Модель дислокации, предложенная Тейлором, Орованом и Поляни, позднее названная краевой дислокацией, показана на рисунке 13.
Согласно этой модели, в кристалле имеется оборванная плоскость - экстраплоскость. Вблизи обрыва экстраплоскости остальные плоскости кристаллической решетки изгибаются. Таким образом, вблизи края экстраплоскости кристаллическая решетка искажена. Величина искажений кристаллической решетки быстро снижаются при удалении от края экстраплоскости, но сохраняется при движении вдоль линии обрыва. Поэтому такую дислокацию называют краевой. Таким образом, дислокации представляют собой линейные дефекты кристаллической решетки.
Для оценки величины искажений кристаллической решетки вблизи дислокации Бюргерс предложил построить замкнутый контур вокруг участка кристалла, содержащего дислокацию, а затем построить т кой же контур на участке кристалла с правильной решеткой.
Как видно из приведенного рисунка (рис. 14), для построения замкнутого контура вокруг участка, содержащего дислокацию, потребовалось 23 шага. При построении аналогичного контура в области совершенного кристалла аналогичный контур не замыкается и для замыкания контура требуется еще один вектор (b), в настоящее время называемый вектором Бюргерса. Построение контура Бюргерса в участке кристалла содержащего дислокацию можно начинать из произвольной точки и в любом направлении. Однако в любом случае вектор Бюргерса оказывается перпендикулярным линии краевой дислокации.
В связи с этим у Бюргерса возник вопрос: нельзя ли представить дислокацию, вектор смещения которой параллелен линии дислокации? В 1939 году он предложил геометрический образ такой дислокации и назвал ее винтовой дислокацией. Как видно из рис. 15а), при круговом движении по плоскости перпендикулярной винтовой дислокации происходит нисходящее или восходящее смещение на следующую плоскость аналогичное движение по винтовой лестнице. Поэтому такой дефект называют винтовой дислокацией
У вектора Бюргерса есть ряд особенностей:
вектор Бюргерса нонвариантен, то есть неизменен. Следовательно, дислокация не может оборваться в кристалле;
энергия упругих искажений решетки пропорциональна квадрату модуля вектора Бюргерса;
при движении решеточной дислокации с вектором Бюргерса, равным периоду трансляции решетки, кристаллическая решетка не изменяется.
При приложении внешних напряжений дислокации смещаются и выходят на поверхность кристалла, и таким образом осуществляется пластическая деформация. Очевидно, что перемещение дислокаций вдоль плотноупакованных направлений и в плотноупакованных плоскостях осуществляется легче, чем в неплотноупакованных направлениях, вдоль которых расстояния между атомами больше. Следовательно, материалы с плотноупакованными кристаллическими решетками - металлы - обладают высокой пластичностью.
Присутствие в кристаллической решетке дислокаций оказывает существенное влияние на механические и электрические свойства материалов. При полном отсутствии дислокаций прочность кристаллов была бы равна теоретической. Подтверждением этого положения является создание кристаллов малого диаметра, так называемых "усов". Усы практически свободны от дислокаций, и их прочность приближается к теоретической. В обычных материалах дислокации всегда присутствуют, поэтому их прочность существенно ниже теоретической. Важно отметить, что при повышении плотности дислокаций в обычных материалах их прочность возрастает. Это связано с тем, что в ядре дислокации кристаллическая решетка искажена, а следовательно, дислокации окружены полями упругих напряжений. При увеличении плотности дислокаций поля упругих напряжений перекрываются, дислокации взаимодействуют друг с другом, и перемещение дислокаций затрудняется. Хотя прочность материалов с повышенной плотностью дислокаций всего лишь в два - три раза выше прочности материалов с обычной плотностью дислокаций, повышение прочности за счет повышения плотности дислокаций имеет большой практический интерес. Дело в том, что повышение плотности дислокаций легко провести путем холодной пластической деформации. Испокон веков прежде чем точить косу, крестьяне отбивали ее, то есть ударяли по режущей часть лезвия косы молотком. При этом режущая часть упрочнялась и меньше тупилась при работе.
Повышение прочности металлов в ходе холодной пластической деформации называют наклепом, или нагартовкой. Зависимость прочности металлических материалов от плотности дислокаций показана на рис. 16.
Наличие в материале дислокаций резко повышает скорость диффузии. Это связано с тем, что дислокации могут являться источниками и стоками вакансий. При испускании вакансий дислокации переползают на плоскость лежащую выше, а при поглощении вакансий дислокации переползают на плоскость, лежащую ниже исходной плоскости. Таким образом, наличие дислокаций повышает локальную концентрацию вакансий, а следовательно, ускоряет диффузию. Опытные мастера, прежде чем затачивать жало паяльника, отбивают его. Тогда при облуживании жала припоем, олово, входящее в состав припоя, диффундирует в медное жало, и на поверхности жала образуется тонкий слой сплава меди с оловом – бронзы. Коррозионная стойкость материала повышается, и жало паяльника служит дольше.
Важно отметить, что решеточные дислокации взаимодействуют с атомами растворенных примесей или легирующих элементов. Как отмечалось выше, вблизи чужеродного атома кристаллическая решетка искажена - растянута или сжата. В ядре дислокации кристаллическая решетка также искажена: под экстраплоскостью кристаллическая решетка растянута, а над экстраплоскостью сжата. Поэтому чужеродные атомы притягиваются к дислокациям, образуя атмосферы Котрелла. При движении дислокаций вместе с ними перемещаются и атмосферы Котрелла, что приводит к затруднению движения дислокаций или к повышению прочности металлических материалов. Поэтому сплавы прочнее чистых металлов.
Искажение кристаллической решетки за счет присутствия дислокаций повышает удельное электрическое сопротивление металлических материалов и снижает удельное электрическое сопротивление неметаллических материалов. Природа влияния дислокаций на электрические свойства материалов аналогична природе влияния точечных дефектов.