Магнитоэлектрические приборы

КЛАССЫ ТОЧНОСТИ

Согласно стандарту пределы допускаемых основной и дополнительных погрешностей выражают в форме

v приведен­ных,

v относительных или

v абсолютных погрешностей

в зависимости от характера изменения погрешностей в пределах диапазона измерений, а также от условий применения и назначения средств измерений.

Пределы допускаемой абсолютной основной погрешности, выраженной в единицах измеряемой величины или условно в делениях шкалы, устанавливают по формуле

Dх = ± а (*)

Пределы допускаемой абсолютной основной погрешности, выраженной в единицах измеряемой величины или условно в делениях шкалы, устанавливают по формуле

х = ±(а+bх), (**)

где х — значение измеряемой величины на входе (выходе) средства измерений или число делений, отсчитанных по шкале;

а, b — положительные числа, не зависящие от х.

Пределы допускаемой приведенной основной погрешности (в процентах) устанавливают по формуле

g = 100D x / x N

где D х — пределы допускаемой абсолютной основной погрешно­сти;

xn — нормирующее зна­чение — условно принятое значение измеряемой величины, выра­женное в тех же единицах, что и D x;

Нормирующее значение xn для средств измерений с равно­мерной или степенной шкалой, а также для измерительных пре­образователей, если нулевое значение входного (выходного) сиг­нала находится на краю или вне диапазона измерений, устанав­ливают равным большему из пределов измерений или равным большему из модулей пределов измерений, если нулевое значение находится внутри диапазона измерений. Для электроизмеритель­ных приборов с равномерной шкалой, практически равномерной или степенной шкалой и нулевой отметкой внутри диапазона измерений xn допускается устанавливать равным сумме модулей пределов измерений. Практически равномерная шкала — шкала, длины делений которой различаются не более чем на 30%, а цена делений постоянна.

Для измерительных приборов с существенно неравномерной шкалой (например, для омметров) нормирующее значение устанавливают равным всей длине шка­лы или ее части, соответствующей диапазону измерений. В этом случае пределы абсолютной погрешности выражают, как и длину шкалы, в единицах длины.

Пределы допускаемой относительной основной погрешности (в процентах) устанавливают по формуле

g = 100D x / x,

если D x установлено по формуле (*), или по формуле

(***)

если D x установлено по формуле (**).

В этих выражениях хк больший (по модулю) из пределов измерений;

с, а положительные числа, причем c = (b + a/|xK|)100; d=100a/|xK|.

Правила и примеры обозначения классов точности средств измерений

Формула для предельной основной погрешности Пределы допускаемой основной погрешности, % Обозначение класса точности
в общем виде пример
g=100D x / x N ± p р или р 1,5 или 2,5
2,5
q

  ± q    
c/d 0,2/0,1

Классы точности средств измерений, пределы допускаемой основной погрешности которых принято выражать в форме приведенной погрешности или отно­сительной погрешности, обозначают числами, кото­рые равны пределам, выраженным в процентах. Для средств измерений, пределы допускаемой основной погрешности которых принято выражать в форме относительных погрешностей (***), классы точности обозначают числами с и d (в процентах), разделяя их косой чертой.

ЭЛЕКТРОМЕХАНИЧЕСКИЕ ПРИБОРЫ

Общие сведения. Электромеханический прибор включает в себя измерительную цепь, измерительный механизм и отсчетное устройство.

Измерительная цепь служит для преобразования измеряемой электрической величины в другую электрическую величину, непо­средственно воздействующую на измерительный механизм.

Из­мерительный механизм преобразует электрическую величину в угол поворота подвижной части.

Отсчетное устройство служит для визуального отсчитывания значений измеряемой величины в зависимости от угла поворота подвижной части.

Несмотря на различие приборов с различными измерительными механизмами, имеется ряд деталей и узлов, общих для всех электромеханических приборов.

Корпус прибора защищает прибор от внешних воздействий, например, от попадания в него пыли.

Отсчетное устройство электромеханического прибора состоит из шкалы и указателя.

Шкала прибора обычно представляет собой пластину, на которой нанесены отметки, соответствующие определенным значениям измеряемой величины.

Указатель представляет собой перемещающуюся вдоль шка­лы стрелку, жестко скрепленную с подвижной частью измери­тельного механизма прибора. В качестве указателя применяют также световой луч, отраженный от зеркальца, укрепленного на оси подвижной части. Луч света попадает на шкалу и образует на ней световое пятно, например, с темной нитью посередине. При повороте подвижной части световой указатель перемещается по шкале.

Крепление подвижной части осуществляется с помощью опор, растяжек или подвеса.

Опоры состоят из кернов и подпят­ников.

Керны представляют собой отрезки стальной проволоки, заточенные с одной стороны на конус.

Подпятники имеют вид цилиндра с коническим углублением по оси. Они чаще всего изготовляются из агата или корунда. Керны, укрепленные на подвижной части по оси вращения, входят в углубления подпят­ников, расположенные на неподвижной части. Недостаток уста­новки на опорах — трение, которое вызывает погрешность.

Подвижная часть может быть подвешена на двух растяжках, представляющих собой упругие металлические ленты, прикреп­ляемые одним концом к подвижной части, а другим — к непо­движным деталям прибора. В случае необходимости растяжки могут быть использованы и для подвода тока в обмотку подвиж­ной части.

Подвешивание подвижной части на подвесе применяется в приборах высокой чувствительности — гальванометрах. Под­вес — тонкая, упругая лента. Приборы, в которых применен под­вес, требуют установки по уровню, поскольку подвижная часть висит свободно и отклонение положения прибора от вертикально­го может вызвать ее касание с неподвижной частью.

Необходимая степень успокоения (требуемое время успокое­ния) достигается в приборах путем применения устройств, назы­ваемых успокоителями. Применяют магнитоиндукционные, жид­костные и воздушные успокоители. Магнитоиндукционное успо­коение создается при движении металлических деталей подвиж­ной части в магнитном поле. Момент успокоения возникает в результате взаимодействия магнитных полей и наводимых то­ков, возникающих в движущихся металлических деталях.

Магнитоиндукционный успокоитель состоит из постоянного магнита и перемещающейся в его рабочем зазоре металлической пластины (из алюминия), укрепленной на подвижной части. Роль успо­коителя может играть также короткозамкнутый виток подвижной части, перемещающийся в поле магнита.

Жидкостное успокоение достигается тем, что подвижная часть измерительного механизма или ее отдельные детали поме­щаются в вязкую жидкость. Поэтому при колебаниях подвижной части расходуется энергия колебаний подвижной части, т. е. со­здается необходимое успокоение. В осциллографических гальва­нометрах с жидкостным успокоением в жидкость помещают либо всю подвижную часть, либо только часть растяжки.

Воздушный успокоитель состоит из камеры и находящейся внутри нее пластины, скрепленной с подвижной частью. При колебаниях подвижной части в камере создается разность давле­ний по обе стороны пластины. Эта разность давлений препятству­ет свободному перемещению подвижной части и вызывает ее успокоение.

Для установки указателя на требуемую отметку в электроме­ханических приборах применяют устройство, называемое коррек­тором. Корректор содержит винт, укрепленный на корпусе прибора, поворачивая который, можно закручивать пружинки, растяж­ки или подвес и тем самым поворачивать подвижную часть прибора и устанавливать указатель на требуемую отметку.

Некоторые приборы снабжают арретиром — устройством, за­тормаживающим подвижную часть прибора.

На каждый прибор наносят условные обозначения. Как пра­вило, на приборе обозначают: единицу измеряемой величины, класс точности, род тока, используемое положение прибора (го­ризонтальное или под углом), если это положение имеет значе­ние. На шкале прибора указывают также условное обозначение типа измерительного механизма.

Общие сведения. Магнитоэлектрические приборы состоят из магнитоэлектрического измерительного механизма с отсчетным устройством и измерительной цепи. Эти приборы применяют для измерения постоянных токов и напряжений (амперметры и вольт­метры), сопротивлений (омметры), количества электричества (баллистические гальванометры и кулонметры). Магнитоэлек­трические приборы применяют также для измерения или индика­ции малых токов и напряжений (гальванометры). Кроме того, магнитоэлектрические приборы используют для регистрации электрических величин (самопишущие приборы и осциллографические гальванометры).

Измерительный механизм. Вращающий момент в измеритель­ном механизме магнитоэлектрического прибора возникает в ре­зультате взаимодействия магнитного поля постоянного магнита и магнитного поля катушки с током. Применяют магнитоэлектри­ческие механизмы с подвижной катушкой и с подвижным магни­том. Наиболее распространен механизм с подвижной катушкой;

На рис. 1 показано устройство магнитоэлектрического изме­рительного механизма с подвижной катушкой, где 1— постоян­ный магнит, 2 — магнитопровод, 3 — полюсные наконечники, 4 — неподвижный сердечник, 5 — спиральная пружинка, 6 — подвижная катушка, 7 — магнитный шунт, 8 — указатель. Ток к подвижной катушке подводится через две спиральные пру­жинки. При протекании тока I через подвижную катушку возни­кает вращающий момент. Мгновенный вращающий момент М=Bswi×da.

Если ток синусоидальный, то вращающий мо­мент Mi=BswIm sin wt. При этом работа механизма зависит от соотношения частоты тока и частоты собственных колебаний подвижной части механизма. У измерительных механизмов магнитоэлектрических ампер­метров, вольтметров, омметров период собственных (свободных) колебаний подвижной части примерно одна секунда. Следовательно, отклонение подвижной части изме­рительного механизма при частоте тока более 10 Гц практически равно нулю. В диапазоне частот до 10 Гц подвижная часть ко­леблется с частотой входного тока, причем максимальное откло­нение зависит от частоты. Поэтому приборы с такими измеритель­ными механизмами применяют в цепях постоянного тока.

При протекании через катушку постоянного тока враща­ющий момент M=BswI.

Если противодействующий момент создается упругими эле­ментами, a=Bswi/W=S,!,

где Si=Bsw/W чувствительность, измерительного механизма к. току.

Из выражения следует, что при постоянной индукции В в зазоре угол отклонения подвижной катушки пропорционален току в катушке, а знак угла отклонения меняется при изменении направления тока.

Магнитный шунт 7 в виде пластины из ферромагнитного материала (см. рис. 1) используют для рулировки индукции в воздушном зазоре механизма путем перемещения шунта. При этом происходит перераспределение магнитных потоков через воздушный зазор и шунт. Это необходимо, например, для измене­ния чувствительности механизма.

В магнитоэлектрических логометрических измерительных ме­ханизмах подвижная часть выполняется в виде двух жестко скрепленных между собой катушек 1и 2, по обмоткам которых протекают токи i 1 и i 2 (рис. 2).Ток к катушкам подводится с помощью металлических лент, практически не имеющих проти­водействующего момента. Моменты Мвр и Мпр, создаваемые взаи­модействием магнитного поля постоянного магнита и токов кату­шек, направлены навстречу друг другу. Так как хотя бы один из моментов должен зависеть от угла поворота подвижной части, то для этого, например, зазор выполняют неравномерным. В этом случае при равенстве моментов получаем

a= f(i1/i2)

В магнитоэлектрических механизмах осуществляется магнитоиндукционное успокоение за счет взаимодействия токов, наво­димых в дюралюминиевом каркасе подвижной катушки при ее перемещении, и поля постоянного магнита и за счет взаимодейст­вия токов, наводимых в цепи катушки, и поля магнита.

Магнитоэлектрические измерительные механизмы имеют не­которые особенности, которые придают магнитоэлектрическим приборам определенные положительные свойства. Магнитоэлек­трические измерительные механизмы имеют высокую чувстви­тельность и малое собственное потребление энергии, имеют ли­нейную и стабильную номинальную статическую характеристику,что объясняется стабильностью свойств применяемых материалов. У этих механизмов отсутству­ет влияние электрических полей и мало влияние магнитных полей из-за достаточно сильного поля в воздушном зазоре (0,2— 1,2 Тл). Однако эти механизмы имеют малую перегрузочную способность по току, относительно сложны и дороги. Недостаток их также в том, что обычные механизмы реагируют только на постоянный ток.

Амперметры и вольтметры. В магнитоэлектрических ампер­метрах измерительный механизм включается в цепь измеряемого тока либо непосредственно, либо при помощи шунта. Непосред­ственное включение применяется при измерении малых токов (до 30 мА), допустимых для токоподводов (пружинок, растяжек) и обмотки подвижной катушки механизма, т. е. непосредственное включение возможно для микро- и миллиамперметров. При боль­ших токах применяют шунты.

Изменение окружающей температуры влияет на магнито­электрический прибор следующим образом.

1. При повышении температуры удельный противодейству­ющий момент пружинок (или растяжек) уменьшается на 0,2— 0,4 % на каждые 10 К; магнитный поток постоянного магнита, а следовательно и индукция в зазоре, уменьшаются приблизи­тельно на 0,2 % на каждые 10 К. Таким образом, эти явления оказывают противоположное влияние на показания прибора и по­этому в приборах малой и средней точности температурное влия­ние пренебрежимо мало.

2. Изменяется электрическое сопротивление обмотки катушки и токоподводов. Это влияние — основной источник температур­ной погрешности магнитоэлектрических приборов.

Амперметры без шунта не имеют температурной погрешно­сти. В амперметрах с шунтом температурная погрешность может оказаться значительной вследствие перераспределения токов между шунтом и подвижной катушкой. Для ее уменьшения при­меняют специальные цепи температурной компенсации, одна из которых показана на рис.. В этом случае температурная погрешность снижается за счет включения последовательно с подвижной катушкой резистора из манганина.

В многопредельных амперметрах для изменения пределов измерения применяют многопредельные шунты. Поэтому мно­гопредельные амперметры снабжают переключателями диапазо­нов измерений или несколькими входными зажимами.

В магнитоэлектрических вольтметрах для получения нужного диапазона измерений последовательно с измерительным меха­низмом включают добавочный резистор стабильного сопротивле­ния, например выполненный из манганина.

Влияние температуры на магнитоэлектрический вольтметр зависит от соотношения сопротивления катушки и резистора, а также от температурных коэффициентов электрического сопро­тивления их.

В многопредельных вольтметрах используют несколько доба­вочных резисторов. Поэтому многопредельные вольтметры снаб­жают переключателем диапазонов или несколькими входными зажимами. Пропорциональная зависимость угла отклонения подвижной части от тока в катушке приводит к равномерной шкале у магнитоэлектрических амперметров и вольтметров.

Магнитоэлектрические амперметры и вольтметры выпускают переносными и щитовыми. Переносные приборы в большинстве случаев делают высокоточными (классов 0,1 — 0,5), многопре­дельными (до нескольких десятков пределов) и часто комбиниро­ванными (вольтамперметрами). Щитовые приборы выпускают однопредельными классов точности 0,5 — 5.

Омметры. На основе магнитоэлектрического измерительного механизма выпускают магнитоэлектрические омметры: с после­довательным включением механизма и объекта исследования, с параллельным включением и с логометрическим измерительным механизмом.

При последовательном включении измерительного механизма и объекта с измеряемым сопротивлением Rx угол отклонения подвижной части измерительного механизма определяется значением Rx. шкалы омметров неравномерны. При последовательном включе­нии максимальному углу отклонения подвижной части соответствует нулевое значение измеряемого сопротивления. Омметры с последовательным включением более пригодны для измерения больших сопротивлений, а с параллельным — малых. Обычно эти омметры выполняют в виде переносных приборов классов точно­сти 1,5 и 2,5.

При питании омметра сухими батареями, у которых напряже­ние изменяется со временем, путем изменения индукции в зазоре с помощью магнитного шунта поддерживают S/t/= const.

Находят применение омметры с логометрическим измеритель­ным механизмом, где угол отклонения определяется значением Rx и не зависит от напряжения питания.

Для измерения больших сопротивлений и, прежде всего, для измерения сопротивления изоляции различных электротехниче­ских установок, используют омметры, называемые мегомметрами. В этих приборах питание цепи осуществляется от встроенного генератора с ручным приводом.

Гальванометры. Гальванометром называют прибор с негра­дуированной шкалой, имеющий высокую чувствительность к току или напряжению. Гальванометры широко применяют в качестве нуль-индикаторов, а также для измерения малых токов, напряже­ний и количества электричества. В последнем случае гальвано­метр называют баллистическим.

Высокая чувствительность гальванометров достигается, главным образом, путем уменьшения противодействующего мо­мента и использования светового указателя с большой длиной светового луча.

Чувствительность гальванометров выражают отношением перемещения указателя к току (напряжению), вызвавшему это перемещение.

Гальванометры бывают переносные и стационарные. Пере­носные гальванометры имеют встроенную шкалу. У стационар­ных гальванометров шкалу устанавливают на некотором расстоя­нии от прибора. Чувствительность стационарного гальваномет­ра зависит от расстояния между зеркальцем гальванометра и шкалой. Принято выражать чувствительность и постоянную стационарного гальванометра для расстояния, равного 1 м, на­пример, C=1,2•10-6 А×м/мм.

Важной характеристикой гальванометра является постоянст­во нулевого положения указателя. Постоянство характеризуется невозвращением указателя к нулевой отметке при плавном воз­вращении указателя от крайней отметки шкалы. По этой характе­ристике гальванометрам присваивают разряд постоянства. Ус­ловное обозначение разряда постоянства гальванометра состоит из числа, заключенного в ромб.

Обычно гальванометр имеет корректор для установки нулево­го положения указателя.

Гальванометры с подвижной частью на подвесе снабжают арретиром для фиксации подвижной части, например, при пере­носке прибора.

Ввиду высокой чувствительности гальванометров к различ­ным воздействиям необходимо защищать их от помех. Так, от механических сотрясений гальванометры защищают, устанавли­вая их на капитальную стену. Для защиты от токов утечки галь­ванометры снабжают экраном, который заземляют. Стационарные гальванометры обычно снабжают магнитным шунтом. Регулируя положение шунта, можно менять чувстви­тельность гальванометра и внешнее критическое сопротивление.

Внешним критическим сопротивлением гальванометра назы­вают наибольшее сопротивление внешней цепи, на которое замк­нута катушка гальванометра и при котором подвижная часть гальванометра во время переходного процесса движется аперио­дически, но наиболее ускоренно.

Движение подвижной части при носит апериодический характер (кривая 3 на рис.). Подвижная часть гальвано­метра приближается к установившемуся отклонению, не перехо­дя его.

В этом случае подвижная часть двигается апериодически, но наиболее ускоренно. Этот граничный случай апериодического движения принято называть движением при критическом успоко­ении (кривая 2 на рис.).

Коэффициент успокоения, отвечающий критическому успоко­ению гальванометра, называют коэффициентом критического успокоения Ркр.

Наиболее благоприятный режим движения подвижной части гальванометра при Р«Ркр (р«1). Этот режим получается при равенстве внешнего критического сопротивления и сопротивле­ния цепи, на которую замкнут гальванометр. Регулируя индукцию В, можно регулировать Рвш. кр, делая его равным сопротивлению внешней цепи. Изменение индукции, а следовательно и изменение внешне­го критического сопротивления, производят с помощью магнитно­го шунта.

Так как установившееся отклонение подвижной части теоре­тически достигается через бесконечно большой промежуток вре­мени, то на практике принято считать отклонение установившим­ся, когда подвижная часть достигает этого отклонения с некото­рой погрешностью. Обычно эту погрешность принимают равной ±(0,1—1) % от максимального отклонения.

Баллистические гальванометры. Гальванометры, предназна­ченные для измерения количества электричества импульса тока и отличающиеся увеличенным моментом инерции, называют бал­листическими.

Допущение о неподвижности подвижной час­ти до окончания действия импульса выполняется тем точнее, чем больше момент инерции подвижной части гальванометра и, следовательно, больше период собственных колебаний То. Для бал­листических гальванометров То составляет десятки секунд (для обычных гальванометров — единицы секунд).

Кулонметры. Кулонметры — приборы для измерения количе­ства электричества в импульсе тока. В этих приборах использу­ется магнитоэлектрический измерительный механизм без проти­водействующего момента. Подвод тока к подвижной катушке осуществляется посредством безмоментных токоподводов. Об­мотка катушки наматывается на алюминиевый каркас, в кото­ром при движении катушки появляется ток, создающий момент успокоения.

Для измерения количества электричества, протекающего в течение длительного времени, используют счетчики количества электричества (счетчики ампер-часов). Магнитоэлектрические счетчики ампер-часов представляют собой электрические двига­тели специальной конструкции со счетным механизмом, у которых частота вращения подвижной части пропорциональна току, а число оборотов за определенный интервал времени соответству­ет количеству электричества за этот интервал.

Класс точности 0,5.


Понравилась статья? Добавь ее в закладку (CTRL+D) и не забудь поделиться с друзьями:  



double arrow