Намагничивание ферромагнетиков

Ферромагнетики (железо, никель, кобальт и их сплавы с алюминием, медью, хромом, серебром) – это сильномагнитные материалы, у которых магнитная проницаемость (μ) намного больше единицы.

Электроны в ферромагнетиках, двигаясь по орбитам вокруг ядра атома, образуют элементарные токи, которые создают отдельные самопроизвольно намагниченные области (домены), имеющие разные направления микроскопических внутренних магнитных полей (рис. 2.6, а). Если ферромагнетик поместить во внешнее магнитное поле, то все домены разворачиваются вдоль внешнего поля, то есть ферромагнетик намагничивается (рис. 2.6, б).


а) б)

Рис. 2.7
Рис. 2.6 Намагничивание ферромагнетиков

Поместим ферромагнитный сердечник в катушку с током I. (рис. 2.7). Ток, протекающий по катушке, создает вокруг витков катушки магнитное поле с напряженностью Н. Ферромагнитный сердечник под действием этого поля будет намагничиваться, т.е. в нем создается магнитная индукция В. Если по катушке протекает переменный ток частотой 50 Гц, (изменяющийся по величине и направлению 50 раз в секунду), то ферромагнитный сердечник в такой катушке будет перемагничиваться с такой же частотой.

а)
б)

Рис. 2.8 Петля гистерезиса Рис. 2.9

Петля гистерезиса (кривая намагничивания) - это график зависимости магнитной индукции ферромагнетика - В от напряженности магнитного поля - Н при намагничивании ферромагнетика (рис. 2.8).

Последовательность намагничивания ферромагнетика (рис. 2.8)

1) Кривая намагничивания начинается из нуля (точка 0), то есть, при Н = 0, В = 0.

2) При увеличении напряженности поля (Н), магнитная индукция (В) быстро растет (участок 0А) и достигает предельного значения +Вм (горизонтальный участок после точки А).

3) При уменьшении Н, магнитная индукция В тоже уменьшается, но медленнее (участок АВ).

При Н = 0 магнитная индукция имеет значение Вrостаточная индукция.

4) При изменении направления намагничивающего тока меняется и направление напряженности поля (участок БГ). При Н = Нс (точка Г), по­лучим индукцию В = 0. Значение Нс называется коэрцитивной силой.

5) При дальнейшем увеличении Н обратного направления (участок ГД) маг­нитная индукция достигнет зна­чения –Вм – максимальная намагниченность обратного направления.

6) При уменьшении Н до нуля (участок ДЕ), получим уменьшение В до значения остаточной индук­ции (отрезок ОЕ).

7) Изменив еще раз направление Н и увеличивая ее (участок ЕЖА), снова получим остаточную индукцию +Вr

Площадь петли гистерезиса пропорциональна энергии, затрачиваемой на намагничивание, поэтому ферромагнетики с узкой петлей гистерезиса легко перемагничиваются и наоборот.

Потери на гистерезис - это потери электроэнергии на нагрев при перемагничивании ферромагнетиков.

Магнитомягкие материалы – это ферромагнитные материалы с узкой петлей гистерезиса (рис. 2.9, а) и малыми потерями на гистерезис (техническое железо, низкоуглеродистая сталь, железо-никелевые сплавы). Применяются для изготовления магнитопроводов трансформаторов и электрических машин.

Магнитотвердые материалы – это ферромагнетики с широкой петлей гистерезиса (рис. 2.9, б), то есть с большой остаточной индукцией (Вr) (углеродистые, вольфрамовые, хромистые, кобальтовые стали). Применяются для изготовления постоянных магнитов.


Понравилась статья? Добавь ее в закладку (CTRL+D) и не забудь поделиться с друзьями:  



double arrow
Сейчас читают про: