Тригонометрическое нивелирование

Угловых измерениях и азимутальных определениях

Выгоднейшее время наблюдений при высокоточных

Высокоточные измерения в геодезических сетях выполняют в периоды так называемого «выгоднейшего» времени наблюдений, когда колебания изображений визирных целей незначительны, прозрачность атмосферы и условия видимости наилучшие, а влияние боковой рефракции мало.

Время tнач наступления выгоднейших условий при вечерних наблюдениях можно в первом приближении предвычислить по формуле

tнач = tзах – 2 x’0,

определив величины x’0 по графику многолетних значений моментов времени перехода радиационного баланса через нуль на разных широтах на высоте 2 м над почвой, а время захода Солнца – по астрономическому ежегоднику. Заканчивать наблюдения рекомендуется примерно за полчаса до захода Солнца.

Утренний период выгоднейшего времени наблюдений много короче, чем вечерний, а иногда и вовсе отсутствует.

В крупных городах наблюдения целесообразно выполнять ранней весной и осенью, когда температурные контрасты в черте города сравнительно малы, а следовательно, невелико влияние рефракции. Летом боковая рефракция в суточном ходе переходит через нулевое значение примерно через 2 часа после восхода, а вечером – примерно за столько же времени до захода Солнца, изменяя при этом всякий раз знаки на противоположные.

Для существенного ослабления влияний местных полей рефракции рекомендуется в жаркую погоду летом симметричные измерения углов относительно момента изотермии воздуха начинать не ранее чем через 1 ч после восхода и продолжать их не более полутора часов; вечерние наблюдения следует прекращать не позднее чем за 1 ч до захода Солнца несмотря даже на хорошую видимость наблюдаемых целей.

Тригонометрическое нивелирование применяют для определения высот пунктов в случаях, когда геометрическое нивелирование трудоемко, например в горах. Исходными служат пункты, высоты которых определены из геометрического нивелирования, эти пункты должны располагаться не реже чем через 75 км. Для определения превышения между пунктами нужно знать зенитное расстояние z, расстояние между пунктами, которое определяют по координатам пунктов или измеряют свето- или радиодальномерами, угол земной рефракции, уклонение отвесной линии, высоты прибора и визирной цели, разности высот квазигеоида. Зенитное расстояние измеряют при двух положениях вертикального круга, горизонтальную нить наводят на верхний срез визирного цилиндра. Измерения выполняют равномерно и последовательно по всем направлениям. Контролем качества служит постоянство места зенита (MZ) и зенитного расстояния наблюдаемого пункта на станции. При вычислении места зенита и зенитного расстояния для теодолита Т-2 используют формулы

MZ = 0,5(Л + П +1800), z = (Л – П – 1800).

Колебания z и MZ согласно Инструкции не должны превышать 15”. Конечный результат, равный среднему арифметическому, округляют до целой угловой секунды.

Рис.1

На рис.1

.

Учитывая , находим

. (1)

Зенитное расстояние

, (2)

где z12 – измеренное зенитное расстояние, υ1 уклонение отвесной линии по данному направлению в точке 1, rg1 – угол земной рефракции в точке 1, D – расстояние между пунктами 1 и 2. .

Для определения обратного превышения на рис.1 имеем

.

Учитывая , находим

. (3)

Зенитное расстояние

, (4)

где z21 – измеренное зенитное расстояние, υ2 уклонение отвесной линии по направлению 1 - 2 в точке 2, rg2 – угол земной рефракции в точке 2.

Формулы (1), (3) можно использовать при одностороннем тригонометрическом нивелировании для определения прямого и обратного превышений. При двустороннем тригонометрическом нивелировании используют формулу

. (5)

Входящий в формулу угол

.

В эти формулы входит расстояние D, измеренное свето- или радиодальномером, в которое введена поправка за замедление скорости ЭМВ в атмосфере.

В тех случаях, когда известны координаты пунктов на плоскости в проекции Гаусса-Крюгера, предварительно от расстояния на плоскости нужно перейти к расстоянию на поверхности эллипсоида:

.

По формулам (1) – (5) определяют разности геодезических высот и в итоге – геодезические высоты относительно принятого эллипсоида, которые широко используют при решении многих задач геодезии. Однако в большинстве топографо-геодезических работ используют нормальные высоты Нγ относительно поверхности квазигеоида. Учитывая, что Н = Нγ + ζ, находим

, (6)

где (ζ2 – ζ1) – разность высот квазигеоида в точках 2 и 1, которые можно определить методом астрономо-гравиметрического нивелирования.

Также для определения разности геодезических высот используют следующие формулы. При одностороннем тригонометрическом нивелировании прямое превышение определяют по формуле

, (7)

обратное превышение

, (8)

При двустороннем тригонометрическом нивелировании используют формулы

. (9)

Для перехода к нормальным высотам используют формулы (6).

В формулах (7), (8), (9) k21, k12 – коэффициенты земной рефракции, связанные с углами земной рефракции формулами

,

, (10)

где τ = -dt / dH, р – в мм рт. ст., α = 1 / 273,15 = 0,003661.


Понравилась статья? Добавь ее в закладку (CTRL+D) и не забудь поделиться с друзьями:  



double arrow
Сейчас читают про: