Расчет рабочих режимов разомкнутых и простых замкнутых электрических сетей

Раздел 2

Лекция 8

8.1 Задача расчета режима сети, основные допущения

Основную задачу расчета режима сети составляет определение параметров режима. Как уже указывалось, к таким параметрам относятся: токи на участках сети, активные и реактивные мощности, напряжение в узлах сети, частота и др.

Исходными данными для расчета служат: расчетные мощности нагрузок, заданные величины напряжения в отдельных точках, схема электрических соединений сети, характеризующая взаимную связь ее элементов и другие величины.

Основным методом для электрического расчета сети является метод последовательных приближений (итераций), который предусматривает постепенный переход от более грубых ответов на поставленную задачу к более точным решениям. Первое приближение (нулевая итерация) при этом может быть получено на основании тех или иных представлений о возможных значениях искомых величин. Применительно к электрическим сетям в качестве первого приближения принимают равенство напряжений во всех точках сети номинальному напряжению. Это позволяет определить токи нагрузок и остальные параметры режима сети, в том числе и напряжения на зажимах нагрузки. Найденные напряжения являются уже вторым приближением к истинному решению. На основании этого можно снова найти токи и продолжать выполнять расчеты до тех пор, пока результаты последующих приближений не будут с заданной точностью отличаться от результатов предыдущих.

Практически при проведении расчетов электрических сетей можно ограничится второй и первой итерациями. К числу таких расчетов относятся расчеты сетей 35 кВ и ниже, а в ряде случаев – проектные расчеты сетей напряжением 110 и 220 кВ. При анализе режимов сетей 35 кВ и ниже ограничиваются первым приближением. Связано это с тем, что требования потребителей к качеству напряжения определяет необходимость обеспечивать для всех точек таких сетей напряжения, мало отличающихся от номинальных, которые принимаются при расчетах первого приближения. Получаемая при этом ошибка лежит в пределах точности расчета. Ошибка, получаемая при ограничении расчетов сетей 110 и 220 кВ вторым приближением, также оказывается в пределах точности расчета.

8.2 Расчет линии с нагрузкой на конце по потере напряжения

Рассмотрим простейшую линию трехфазного тока с симметричной нагрузкой на конце (рисунок 8.1).

Рисунок 8.1

Нагрузка задана либо током I и cosj при фазном напряжении U на конце линии, либо мощностью S = P + jQ.

Расчет проводится с помощью векторной диаграммы токов и напряжений для одной фазы линии, что допускается, так как нагрузка во всех фазах симметрична.

Рисунок 8.2 - Векторная диаграмма линии с нагрузкой на конце

Известны ток нагрузки I, cosj и напряжение U. Необходимо определить U. По действительной оси откладываем вектор заданного напряжения в конце линии U (ОА). Из начала координат откладываем вектор тока I под углом j. Его активная составляющая направлена по действительной оси I, а реактивная составляющая -jI - по мнимой оси в отрицательном направлении. Таким образом, при принятом расположении вектора напряжения и тока на векторной диаграмме знак минус у мнимой части комплекса тока характеризует индуктивный (отстающий) ток нагрузки потребителя.

Далее из точки А откладываем параллельно вектору тока I вектор падения напряжения в активном сопротивлении линии IR (АВ) и под углом 90 к нему в сторону опережения – вектор падения напряжения в реактивном сопротивлении IX (ВС). Соединив точку А с точкой С, получим вектор полного падения напряжения в рассматриваемой линии IZ (АС). Чтобы найти напряжение U, соединим точку С с началом координат, получаем вектор фазного напряжения в начале линии U (ОС).

Падение напряжения в линии

IZ =

может быть разложено на составляющие:

а) продольную DU = АD

б) поперечную d U = DC

т.е. IZ = DU + jd U

Определим эти составляющие. Для этого опустим перпендикуляры из точек В и С на действительную и мнимую оси. В результате получим отрезки:

АЕ = IRcosj; ED = BF = IXsinj;

CF = IXcosj; BE = DF = IRsinj.

Отсюда продольная составляющая

DU = AD = AE + ED = IRcosj + IXsinj = I R + I X (8.1)

d U = DC = CF - DF = IXcosj - IRsinj = I X + I R (8.2)

Напряжение в начале линии

= U + DU + jdU,

а модуль напряжения

U =. (8.3)

В результате построения диаграммы выше был получен вектор полного падения напряжения в линии. Следует отметить, что под падением напряжения понимают геометрическую разность потенциалов между началом и концом линии.

При расчете сетей 35 кВ и ниже обычно вводятся упрощения, заключающиеся в том, что напряжение в начале линии определяют не по падению напряжения, а по потере напряжения. Под потерей напряжения понимают алгебраическую разность абсолютных значений напряжений в начале и в конце линии.

Для определения потери напряжения на диаграмме совместим отрезок ОС с осью действительных величин (отрезок О).

Отрезок А = О - ОА = U - U

представляет собой потерю напряжения.

Так как для сетей 35 кВ и ниже углы между U и U очень малы, а значит мал и отрезок D, то можно считать, что потеря напряжения приблизительно равна продольной составляющей падения напряжения

АD» A» DU» IRcosj + IXsinj (8.4)

Потеря линейного напряжения

DU = DU = I(Rcosj + Xsinj). (8.5)

Векторная диаграмма линейных напряжений будет выглядеть аналогично диаграмме фазных напряжений.

При задании нагрузки активной и реактивной мощностью Р+jQ величина потери напряжения определяется следующим образом

Так как I = Icosj = и I = Isinj =, то, подставив эти значения в (4.5), получим

DU = (IRcosj + IXsinj


Понравилась статья? Добавь ее в закладку (CTRL+D) и не забудь поделиться с друзьями:  



double arrow
Сейчас читают про: