double arrow

Теплообменные аппараты


Теплообменным аппаратом называется устройство, предназначенное для передачи теплоты от горячей среды к холодной.

Кроме аппаратов, в которых передача теплоты является единственной производственной задачей (как для всевозможных нагревателей, охладителей, конденсаторов, испарителей), к теплообменникам можно отнести и разнообразные технологические установки и устройства, например, двигатели внутреннего сгорания, печи для термической обработки материалов, электрические машины, химические реакторы и пр. Общим для них является то, что для рациональной их эксплуатации необходим подвод или отвод определенного количества теплоты. В электрических машинах и аппаратах это будет охлаждение токоведущих частей с целью недопущения перегрева проводника и изоляции.

По механизму переноса теплоты теплообменные аппараты делятся на три основные группы: рекуперативные, регенеративные и смесительные.

Основным признаком рекуперативных теплообменников является наличие теплообменной поверхности – стенки, которая разделяет горячую и холодную жидкости. Это исключает перемешивания жидкостей и позволяет эксплуатировать теплообменник при различных давлениях теплоносителей. Указанные особенности столь полезны, что подавляющее число теплообменных аппаратов относится именно к рекуперативным.




Вместе с тем разделительная стенка является частью аппарата, на котором откладывается зола, накипь, пыль и др., поэтому при эксплуатации рекуперативных теплообменников необходимо проводить мероприятия по очистке теплопередающих поверхностей.

К рекуперативным теплообменникам относятся кожухотрубчатые, пластинчатые и спиральные теплообменники.

Кожухотрубчатые теплообменники получили наибольшее распространение. Они представляют устройство (рис. 2.11), выполненное из блока труб, соединенных трубной доской и заключенных в кожух. Трубки теплообменника являются теплопередающей поверхностью и могут выполняться гладкими и ребристыми, прямыми и U-образными. Ребра у трубок могут иметь самую разнообразную форму: в виде дисков, спиралей, игл, плавников и т.п. Число ходов теплоносителей также может быть разным.

Рис. 2.11. Кожухотрубчатый теплообменный аппарат:

1– крышка камеры; 2 – распределительная камера; 3 – кожух; 4 – теплообменная труба; 5 – опора; 6 – трубная решетка; 7 – крышка

Пластинчатые теплообменники бывают самых разных конструкций и делятся в основном на разборные, полуразборные, неразборные сварные и блочные сварные. Эти аппараты состоят из группы теплообменных пластин (рис. 2.12), подвешенных на горизонтальных штангах, которые закреплены в неподвижных стойках. При помощи нажимной плиты пластины собираются в пакет и в рабочем состоянии плотно прижаты друг к другу. Пространство каналов, образующееся между пластинами, уплотняют резиновыми прокладками. Благодаря этому, в аппарате образуется две системы герметичных каналов: одна для греющей среды, другая для нагреваемой среды.



Рис. 2.12. Пластинчатый теплообменник

Спиральные теплообменники представляют собой две металлические ленты толщиной 3–7 мм, соединенные между собой в середине перегородкой (керном) и навитые вокруг этой перегородки (рис. 2.13) так, что образуются два канала – для греющей и нагреваемой среды. Для недопускания смятия спирали под действием давлений к поверхности ленты привариваются дистанционные штифты. Спиральные теплообменники различают на аппараты с крышками, имеющие тупиковые и сквозные каналы и на аппараты без крышек с глухими каналами.

Рис. 2.13. Спиральный теплообменник

В регенеративных теплообменниках два или более теплоносителя соприкасаются с одной и той же теплообменной поверхностью. Теплообмен в этих аппаратах происходит за несколько периодов. При соприкосновении поверхности аппарата с горячим теплоносителем, его теплообменные поверхности получают теплоту и аккумулируют ее внутрь (нагрев поверхностей). В следующий период, при соприкосновении с поверхностью аппарата холодного теплоносителя аккумулированная теплота отдается ему (охлаждение поверхностей). Так как регенеративные теплообменники являются аппаратами периодического действия, то для непрерывности их работы используют две камеры, в которых направление теплового потока все время меняется.



В смесительных (контактных) теплообменниках происходит непосредственное соприкосновение и смешение различных теплоносителей. Примерами таких аппаратов могут служить оросительная камера у кондиционеров, градирни на ТЭС, скрубберы пылеочистки, деаэраторы котельных и пр.

При расчете теплообменников решаются следующие задачи:

1) определение поверхности теплопередачи, которая обеспечивает передачу заданного количества теплоты;

2) определение количества теплоты, которое может быть передано от горячего теплоносителя к холодному при известной поверхности нагрева;

3) определение конечных температур теплоносителей при известных значениях поверхностей нагрева и количества теплоты, передаваемое через эту поверхность.

В основе расчета теплообменных аппаратов лежат уравнения:

Ø уравнение теплового баланса:

для рекуперативных теплообменных аппаратов

; (2.66)

для регенеративных теплообменных аппаратов

, (2.67)

где G1 и G2 – расходы теплоносителей, с1 и с2 – теплоемкости теплоносителей; , и , – начальные и конечные температуры горячего и холодного теплоносителей; τ1 и τ2 – время нагрева и охлаждения теплопоглощающей поверхности;

Ø уравнение теплопередачи

, (2.68)

где k – коэффициент теплопередачи; F – площадь поверхности теплообмена; – средний температурный напор.

Средний температурный напор определяется по формуле:

, (2.69)

где –наибольший температурный напор; – наименьший температурный напор (см. рис. 2.14).

Рис. 2.14. Изменение температурного напора по теплообменной

поверхности F

Площадь теплообмена можно определить, зная значения расхода одного из теплоносителей и его скорость:

, м2. (2.70)

Теплопроизводительность теплообменника при заданных температурах теплоносителей на входе рассчитывают

, Вт. (2.71)

ПЕРЕЧЕНЬ ВОПРОСОВ







Сейчас читают про: