Ряды Фурье и их применение в технике связи

Разложение непрерывного сигнала в ортогональные ряды

Лекция 6. Непрерывный канал

Критерии качества восстановления.

Существуют следующие критерии:

1) Критерий наибольшего отклонения

где: допускаемая погрешность восстановления, - max значение - текущая погрешность приближения.

При этом имеется уверенность, что любые изменения исходного сигнала, включая кратковременные выбросы будут зафиксированы.

2) Критерий СКЗ. где: - дополнительная СК погрешность приближения, - СК погрешность приближения.

3) Интегральный критерий

- определяется max среднее значение за период дискретизации.

4) Вероятностный критерий

.

Задаётся допустимый уровень, величина Р – вероятности того, что текущая погрешность приближения не зависит от некоторого определённого значения.

Цель лекции: ознакомление c непрерывным каналом

Содержание:

а) разложение непрерывного сигнала в ортогональные ряды;

б) Ряды Фурье и их применение в технике связи;

в) теорема Котельникова (Основная теорема Шеннона);

г) пропускная способность непрерывного канала;

д) модель НКС.

В теории связи для представления сигналов широко используются два частных случая разложения функций в ортогональные ряды: разложение по тригонометрическим функциям и разложение по функциям вида sin x/x. В первом случае получаем спектральное представление сигнала в виде обычного ряда Фурье, а во втором случае – временное представление в виде ряда В.А. Котельникова.

Простейшей с практической точки зрения формой выражения сигнала является линейная комбинация некоторых элементарных функций

. (6.1)

В общем случае, сигнал представляет собой сложное колебание, поэтому возникает необходимость представить сложную функцию s(t), определяющую сигнал, через простые функции.

При изучении линейных систем такое представление сигнала весьма удобно. Оно позволяет решение многих задач расчленить на части, применяя принцип суперпозиции. Например, чтобы определить сигнал на выходе линейной системы, вычисляется реакция системы на каждое элементарное воздействие ψk(t), а затем результаты, умноженные на соответствующие коэффициенты аk легко вычислялись и не зависели от числа членов суммы. Указанным требованиям наиболее полно удовлетворяет совокупность ортогональных функций.

Функции ψ1(t), ψ2(t),...., ψn(t). (6.2)

Заданные на интервале, называются ортогональными,

если при. (6.3)

Основой спектрального анализа сигналов является представление функций времени в виде ряда или интеграла Фурье. Любой периодический сигнал s(t), удовлетворяющий условию Дирихле, может быть представлен в виде ряда по тригонометрическим функциям

где, (6.4)

, (6.5)

. (6.6)

Величина а0, выражающая среднее значение сигнала за период, называется постоянной составляющей. Она вычисляется по формуле

. (6.7)

Весьма удобной является комплексная форма записи ряда Фурье

, (6.8)

где,.

Величина Ak есть комплексная амплитуда, она находится по формуле

. (6.9)

Соотношения (6.8) и (6.9) составляют пару дискретных преобразований Фурье. Необходимо отметить, что рядом Фурье можно представить не только периодический сигнал, но и любой сигнал конечной длительности. В последнем случае сигнал S(t) принимается периодически продолженным на всей оси времени. При этом равенство (6.4) или (6.8) представляет сигнал только на интервале его длительности (- Т/2,Т/2). Случайный сигнал (или помеха), заданный на интервале (- Т/2,Т/2), может быть также представлен рядом Фурье

, (6.10)

где ak и b k являются случайными величинами (для флуктационной помехи – независимыми случайными с нормальным распределением).


Понравилась статья? Добавь ее в закладку (CTRL+D) и не забудь поделиться с друзьями:  



double arrow
Сейчас читают про: