Ключевой

ШИМ

Принцип действия

Разновидности

Импульсный стабилизатор напряжения

Импульсный стабилизатор напряжения — это стабилизатор напряжения, в котором регулирующий элемент работает в ключевом режиме[1], то есть большую часть времени он находится либо в режиме отсечки, когда его сопротивление максимально, либо в режиме насыщения — с минимальным сопротивлением, а значит может рассматриваться как ключ. Плавное изменение напряжения происходит благодаря наличию интегрирующего элемента: напряжение повышается по мере накопления им энергии и снижается по мере отдачи её в нагрузку. Такой режим работы позволяет значительно снизить потери энергии, а также улучшить массогабаритные показатели, однако имеет свои особенности.

По соотношению входного и выходного напряжения

  • Понижающие
  • Повышающие
  • С произвольным изменением напряжения
  • Инвертирующие

По типу ключевого элемента

  • На полевых транзисторах
  • На тиристорах
  • На биполярных транзисторах

Интегрирующим элементом может быть

  • Дроссель
  • Конденсатор
  • Аккумулятор

В зависимости от режима работы могут быть стабилизаторы

  • на основе широтно-импульсной модуляции
  • двухпозиционные (или релейные)

Важнейшими элементами импульсного источника питания являются ключ — устройство, способное за короткое время изменить сопротивление прохождению тока с минимального на максимальное, и наоборот, и интегратор, напряжение на котором не может измениться мгновенно, а плавно растёт по мере накопления им энергии и так же плавно падает по мере отдачи её в нагрузку. Простейшим примером такого элемента может служить конденсатор, перед которым включено некоторое ненулевое сопротивление (в качестве которого может служить, к примеру, внутреннее сопротивление источника питания)[замечание 1].

Функциональная схема импульсного стабилизатора с ШИМ

На рисунке изображена функциональная схема импульсного стабилизатора на основе широтно-импульсной модуляции. Входное напряжение Ui через ключ (1) поступает на интегратор (2). Интегратор накапливает энергию, подаваемую с ключа и отдаёт её в нагрузку, когда ключ разомкнут. В результате на выходе имеем усреднённое значение напряжения, которое зависит от входного напряжения и скважности импульсов с небольшой пульсацией, зависящей от частоты генератора и ёмкости конденсатора. Это напряжение с помощью операционного усилителя (4) сравнивается с опорным напряжением с эталона (6). Разница между ними поступает на модулятор (3). Модулятор преобразует импульсы генератора (5) в прямоугольные импульсы, скважность которых зависит от разности между опорным и выходным напряжением. Обычно генератор выдаёт треугольные или пилообразные импульсы, которые преобразуются в прямоугольные с помощью порогового элемента с регулируемым порогом срабатывания. Импульсы с выхода модулятора управляют замыканием и размыканием ключа (1).

Функциональная схема ключевого стабилизатора

Несколько иначе устроен ключевой стабилизатор напряжения (называемый также релейным или стабилизатором с двухпозиционным регулированием [2]). В нём также входное напряжение поступает через ключевой элемент (1) на накопитель (2), а выходное сравнивается с опорным в ОУ (4). Однако разность между ними подаётся на триггер Шмитта (3). Как только выходное напряжение превышает опорное на определённую величину U1, триггер Шмитта открывается и закрывает ключ (1). Накопитель разряжается, пока напряжение на нём не упадёт ниже некоторой величины U2, после чего ключ снова открывается и процесс повторяется.

Такой стабилизатор проще по конструкции, однако частота замыкания\размыкания ключа в нём непостоянна, что не всегда удобно. Кроме того, при двухпозиционном регулировании возможно использование не всех видов преобразований: например невозможно использование описанного ниже повышающего преобразователя.

Примечание

1. Конденсатор взят для наглядности, но в реальных схемах КПД такого преобразователя мал, и не превышает КПД линейных регуляторов, т.к. много энергии рассеивается на упомянутом сопротивлении, или излучается в виде электромагнитной энергии (см "Two Capacitors Paradox"). Схемы, позволяющие достичь более высокого КПД описаны ниже.


Понравилась статья? Добавь ее в закладку (CTRL+D) и не забудь поделиться с друзьями:  



double arrow
Сейчас читают про: