Константа химического равновесия. Скорость прямой реакции w1 непрерывно уменьшается, а скорость обратной реакции w2 непрерывно увеличивается

Скорость прямой реакции w1 непрерывно уменьшается, а скорость обратной реакции w2 непрерывно увеличивается, и в тот момент, когда скорость обратной реакции становится равной скорости прямой реакции, наступает химическое равновесие: w1 =w2.

Рассмотрим реакцию

.

Если концентрация веществ при химическом равновесии обозначить сА, сВ, сС и сD, причем (для идеальной газовой системы), то

где k1 и k2 –константы скорости прямой и обратной реакций.

При химическом равновесии w1 =w2, т.е.

;

и

Отношение -константа равновесия химической реакции:

(6.11)

Выражение константы равновесия может быть представлено через парциальные давления (для идеальной газовой системы):

, (6.12)

где рА, рВ, рС и рD –парциальные давления отдельных газов в смеси при химическом равновесии.

Константы Кс и Кр связаны зависимостью

, (6.13)

где -изменение числа молей в реакции.

Для реакции

.

Например, для реакции

СО + Н2ОН2 + СО2

при Кс = Кр; при Кс > Кр; при Кс < Кр .

Зависимость констант равновесия от температуры:

,

(6.14)

Приведенные уравнения показывают, что знак изменения константы равновесия при увеличении температуры зависит от знака теплоты реакции (Закон Вант-Гоффа).

Из закона Вант-Гоффа следует, что в экзотермических реакциях тепловой эффект положителен (q > 0) и, следовательно, . В таких реакциях при увеличении температуры увеличивается и константа равновесия К. Увеличение последней означает, что при равновесии возрастает концентрация исходных веществ и убывает концентрация веществ, получаемых в реакции, т.е. для осуществления экзотермических реакций благоприятны низкие температуры.

В эндотермических реакциях тепловой эффект отрицателен (q < 0) и в них при увеличении температуры константа равновесия уменьшается . Это означает, что при равновесии уменьшается концентрация начальных веществ и увеличивается концентрация полученных веществ, т.е. для эндотермических реакций благоприятны высокие температуры.

Зависимость констант равновесия от температуры может быть выражена следующим образом:

, (6.15)

где q0 –тепловой эффект при абсолютном нуле температуры (можно определить исходя из значений q298 при стандартных условиях), а С –константа интегрирования, определяемая в соответствии с законом Нернста.

В конденсированных системах С = 0 (закон Нернста).

Таблица 6.1

Химические константы i и условные

химические константы j

Вещество Химическая константа i Условная химическая константа j
Н2 -368 +1,6
N2 -3,11 +2,6
Вещество Химическая константа i Условная химическая константа j
O2 +0,65 +2,8
CO -0,07 +3,5
CO2 +0,8 +3,2
H2O +1,95 +3,6
CH4 -1,96 +2,5
NO +0,52 +3,5
N2 -3,11 +2,6

В газовых системах

,

где i –химические константы соответствующих веществ (табл. 6.1).

Иногда принимают приближенное уравнение

,

где qp –тепловой эффект при комнатной температуре и

,

где j –условные химические константы соответствующих веществ.

Ориентировочно можно принимать j = 1,5 для одноатомных газов и водорода и j = 3,0 для двух- и многоатомных газов.

От давления константы равновесия зависят незначительно, и при не очень высоких давлениях зависимостью Кс и Кр от давления пренебрегают.


Понравилась статья? Добавь ее в закладку (CTRL+D) и не забудь поделиться с друзьями:  



double arrow
Сейчас читают про: