Примеры. Случай комплексных чисел

Случай комплексных чисел

Примеры

Другие свойства

Свойства сохранения порядка

· Если все элементы сходящейся последовательности, начиная с некоторого номера, не превышают некоторого числа, то и предел этой последовательности также не превышает этого числа.

· Если некоторое число не превышает все элементы сходящейся последовательности, начиная с некоторого номера, то оно также не превышает и предела этой последовательности.

· Если некоторое число строго превышает все элементы сходящейся последовательности, начиная с некоторого номера, то предел этой последовательности не превышает этого числа.

· Если все элементы сходящейся последовательности, начиная с некоторого номера, строго превышают некоторое число, то это число не превышает предела этой последовательности.

· Если, начиная с некоторого номера, все элементы одной сходящейся последовательности не превышают соответствующих элементов другой сходящейся последовательности, то и предел первой последовательности не превышает предела второй.

· Для числовых последовательностей справедлива теорема о двух милиционерах (принцип двустороннего ограничения).

· Сходящаяся числовая последовательность имеет только один предел.

· Замкнутость. Если все элементы сходящейся числовой последовательности лежат на некотором отрезке, то на этом же отрезке лежит и её предел.

· Предел последовательности из одного и того же числа равен этому числу.

· Замена или удаление конечного числа элементов в сходящейся числовой последовательности не влияет на её предел.

· У возрастающей ограниченной сверху последовательности есть предел. То же верно для убывающей ограниченной снизу последовательности.

· Имеет место теорема Штольца.

· Если у последовательности xn существует предел, то последовательность средних арифметических имеет тот же предел (следствие из теоремы Штольца).

· Если у последовательности чисел существует предел, и если задана функция, определенная для каждого и непрерывная в точке, то

·

·

·

·

·

·

·

·

·

·

Комплексное число a называется пределом последовательности { zn }, если для любого положительного числа ε можно указать такой номер N = N (ε), начиная с которого все элементы zn этой последовательности удовлетворяют неравенству
| zna | < ε при

Последовательность { zn }, имеющая предел a, называется сходящейся к числу a, что записывается в виде.

Не у всякой ограниченной последовательности существует предел. Например, если взять в качестве пространства множество вещественных чисел со стандартной топологией, а в качестве xn последовательность xn = (− 1) n, то у неё не будет предела (однако у неё можно найти верхний и нижний пределы, 1, − 1, то есть пределы её подпоследовательностей — частичные пределы).


Понравилась статья? Добавь ее в закладку (CTRL+D) и не забудь поделиться с друзьями:  



double arrow
Сейчас читают про: