Могут служить базы данных

Одним из примеров Информационной модели данных

В иерархической ИМ объекты распределены по уровням. Каждый элемент более высокого уровня может состоять из нескольких элементов нижнего уровня, при этом элемент нижнего уровня может входить в состав только одного элемента верхнего уровня.

Типы ИМ

Табличные ИМ. Самый распространенный из табличных типов – прямоугольная таблица из строк и столбцов. В Табл. ИМ перечень однотипных объектов или свойств размещен в первом столбце (или строке) таблицы, а значения их свойств – в следующих.

Иерархические ИМ. Объекты с одинаковыми свойствами объединяют в классы. Внутри класса могут быть выделены подклассы, где объекты обладают некоторыми особенными свойствами, подклассы тоже могут делиться на еще более мелкие группы и так далее. Процесс систематизации объектов называется классификацией. В процессе классификации часто строится иерархическая структура. В иерархической структуре элементы распределяются по уровням от первого (верхнего) до нижнего (последнего) уровня. На первом уровне может располагаться только один элемент, который является «ВЕРШИНОЙ» структуры.

Сетевые ИМ. Применяются для отражения систем со сложной структурой, в которых связи между элементами имеют произвольный характер. Пример: Региональные части Интернет (американская, европейская, российская, австралийская и так далее) связаны между собой высокоскоростными линиями связи. При этом одни части (американская) имеют прямые связи со всеми региональными частями Интернета, а другие могут обмениваться информацией только через американскую часть.

База данных — это информационная модель предметной области, совокупность взаимосвязанных, хранящихся вместе данных при наличии такой минимальной избыточности, которая допускает их использование оптимальным образом для одного или нескольких приложений. Данные (файлы) хранятся во внешней памяти и используются в качестве входной информации для решения задач.

СУБД(система управления базой данных) — программа, с помощью которой реализуется централизованное управление данными, хранимыми в базе, а также доступ к ним, поддержка их в актуальном режиме.

СУБД классифицируются по выполняемым функциям на:

• операционные;

• информационные;

по сфере применения на:

• универсальные;

• проблемно-ориентированные;

по используемому языку общения на:

замкнутые, имеющие собственные самостоятельные языки общения пользователей с базами данных;

открытые (в которых используется язык программирования, расширенный операторами языка манипулирования данными);

по числу поддерживаемых уровней моделей данных на:

• одноуровневые системы;

• двухуровневые системы;

• трехуровневые системы;

по способу установления связей между данными:

• реляционные базы данных;

• иерархические базы данных;

• сетевые базы данных;

по способу организации хранения данных и выполнения функций обработки базы данных на:

• централизованные;

• распределенные.

Системы централизованных баз данных с сетевым доступом предполагают две основные архитектуры:

архитектура файл-сервер предполагает выделение одной из машин сети в качестве центральной (главный сервер файлов где хранится совместно используемая централизованная база данных. Все другие машины сети исполняют роль рабочих станций. Файлы базы данных в соответствии с пользовательскими запросами передаются на рабочие станции, где в основном и производится их обработка. При большой интенсивности доступа к одним и тем же данным производительность информационной системы падает;

архитектура клиент-сервер. Каждый из подключенных к сети и составляющих эту архитектуру компьютеров играет свою роль: сервер владеет и распоряжается информационными ресурсами системы, клиент имеет возможность пользоваться ими.

Сервер базы данных представляет собой СУБД, параллельно обрабатывающую запросы, поступившие со всех рабочих станций. Как правило, клиент и сервер территориально отдалены друг от друга, и в этом случае они образуют систему распределенной обработки данных.

Характеристиками СУБД являются:

• производительность;

• обеспечение целостности данных на уровне баз данных;

• обеспечение безопасности данных;

• возможность работы в многопользовательских средах;

• возможность импорта и экспорта данных;

• обеспечение доступа к данным с помощью языка SQL;

• возможность составления запросов;

• наличие инструментальных средств разработки прикладных программ.

Производительность СУБД оиенивается:

• временем выполнения запросов;

• скоростью поиска информации;

• временем импортирования баз данных из других форматов;

• скоростью выполнения операций (таких как обновление, вставка, удаление);

• временем генерации отчета и другими показателями.

Безопасность данных достигается:

• шифрованием прикладных программ;

• шифрованием данных;

• защитой данных паролем;

• ограничением доступа к базе данных.

Обеспечение целостности данных подразумевает наличие средств, позволяющих удостовериться, что информация в базе данных всегда остается корректной и полной. Целостность данных должна обеспечиваться независимо от того, каким образом данные заносятся в память (в интерактивном режиме, посредством импорта или с помощью специальной программы). Система управления базами данных управляет данными во внешней памяти. Обеспечивает надежное хранение данных и поддержку соответствующих языков базы данных. Важной функцией СУБД является функция управления буферами оперативной памяти.

Известны три типа моделей описания баз данных.

• иерархическая;

• сетевая;

• реляционная.

Основное различие между ними состоит в характере описания взаимосвязей и взаимодействия между объектами и атрибутами базы данных.

Иерархическая модель предполагает использование для описания базы данных древовидных структур, состоящих из определенного числа уровней. "Дерево" представляет собой иерархию элементов, называемых узлами. Под элементами понимаются список, совокупность, набор атрибутов, элементов, описывающих объекты.

Достоинством модели является:

• простота ее построения;

• легкость понимания сути принципа иерархии;

• наличие промышленных СУБД, поддерживающих данную модель.

Недостатком является сложность операций по включению в иерархию информации о новых объектах базы данных и удалению устаревшей информации.

Сетевая модель описывает элементарные данные и отношение между ними в виде ориентированной сети. Это такие отношения между объектами, когда каждый порожденный элемент имеет более одного исходного и может быть связан с любым другим элементом структуры.

Сетевые структуры могут быть многоуровневыми, иметь разную степень сложности.

База данных, описываемая сетевой моделью, состоит из областей (областииз записей, а записииз полей). Недостатком сетевой модели является ее сложность, возможность потери независимости данных при реорганизации базы данных. При появлении новых пользователей, новых приложений и новых видов запросов происходит рост базы данных, что может привести к нарушению логического представления данных. Реляционная модель имеет в своей основе понятие "отношения", и ее данные формируются в виде таблиц. Отношение — это двумерная таблица, имеющая свое название, в которой минимальным объектом действий, сохраняющим ее структуру, является строка таблицы (кортеж), состоящая из ячеек таблицы — полей. Каждый столбец таблицы соответствует только одному компоненту этого отношения. С логической точки зрения реляционная база данных представляется множеством двумерных таблиц различного предметного наполнения.

В зависимости от содержания отношения реляционные базы данных бывают:

объектными, в которых хранятся данные о каком-либо одном объекте, экземпляре сущности. В них один из атрибутов однозначно определяет объект и называется ключом отношения, или первичным атрибутом. Остальные атрибуты функционально зависят от этого ключа;

связными, в которых хранятся ключи нескольких объектных отношений, по которым между ними устанавливаются связи.

Достоинства реляционной модели:

• простота построения;

• доступность понимания;

• возможность эксплуатации базы данных без знания методов и способов ее построения;

• независимость данных;

• гибкость структуры и др.

Недостатки реляционной модели:

• низкая производительность по сравнению с иерархической и сетевой моделями;

• сложность программного обеспечения;

• избыточность элементов.

Компьютерное моделирование

Исторически случилось так, что первые работы по компьютерному моделированию, или, как говорили раньше, моделированию на ЭВМ, были связаны с физикой, где с помощью моделирования решался целый ряд задач гидравлики, фильтрации, теплопереноса и теплообмена, механики твердого тела и т. д. Моделирование, в основном, представляло собой решение сложных нелинейных задач математической физики с помощью итерационных схем, и по существу оно было моделированием математическим. Успехи математического моделирования в физике способствовали распространению его на задачи химии, электроэнергетики, биологии и некоторые другие дисциплины, причем схемы моделирования не слишком отличались друг от друга. Сложность решаемых на основе моделирования задач всегда ограничивалась лишь мощностью имеющихся ЭВМ.

В настоящее время понятие «компьютерное моделирование» обычно связывают с системным анализом — направлением кибернетики, впервые заявившим о себе в начале 50-х годов при исследовании сложных систем в биологии, макроэкономике, при создании автоматизированных экономико-организационных систем управления. Основные методы и процедуры, используемые обычно при системном анализе, заимствованы из других дисциплин, в большей степени из исследования операций.

В настоящее время под компьютерной моделью чаще всего понимают:

—условный образ объекта или некоторой системы объектов (или процессов), описанный с помощью взаимосвязанных компьютерных таблиц, блоков-схем, диаграмм, графиков, рисунков, анимационных фрагментов, гипертекстов и т. д. и отображающий структуру и взаимосвязи между элементами объекта. Компьютерные модели такого вида мы будем называть структурно-функциональными;

—отдельную программу, совокупность программ, программный комплекс, позволяющий с помощью последовательности вычислений и графического отображения их результатов воспроизводить (имитировать) процессы функционирования объекта, системы объектов при условии воздействия на объект различных, как правило, случайных факторов. Такие модели мы будем далее называть имитационными моделями. Компьютерное моделированиеметод решения задачи анализа или синтеза сложной системы на основе использования ее компьютерной модели. Суть компьютерного моделирования заключена в получении количественных и качественных результатов по имеющейся модели. Качественные выводы, получаемые по результатам анализа, позволяют обнаружить неизвестные ранее свойства сложной системы: ее структуру, динамику развития, устойчивость, целостность и др. Количественные выводы в основном носят характер прогноза некоторых будущих или объяснения прошлых значений переменных, характеризирующих систему.

Предметом компьютерного моделирования могут быть: экономическая деятельность фирмы или банка, промышленное предприятие, информационно-вычислительная сеть, технологический процесс, любой реальный объект или процесс, например, процесс инфляции, и вообще любая сложная система.

Компьютерная модель сложной системы должна, по возможности, отображать все основные факторы и взаимосвязи, характеризующие реальные ситуации, критерии и ограничения. Модель должна быть достаточно универсальной, чтобы по возможности описывать близкие по назначению объекты, и в то же время достаточно простой, чтобы позволить выполнить необходимые исследования с разумными затратами.


Понравилась статья? Добавь ее в закладку (CTRL+D) и не забудь поделиться с друзьями:  



double arrow
Сейчас читают про: