Стали для режущего инструмента

Классификация инструментальных сталей

Инструментальные стали и сплавы

К инструментальным относится большая группа сталей и сплавов, используемых для обработки материалов резанием и дав­лением и обладающих после термической обработки вы­сокой твердостью, прочностью и износостойкостью. Ча­ще всего инструментальные стали подразделяют на не­теплостойкие, полутеплостойкие и теплостойкие (табл. 11).

В зависимости от их назначения стали делят на (табл. 12 ): стали для режущих инструментов, штамповые стали для холодного и горячего деформирования и стали для точных инструментов.

Инструментальные стали получают либо обычным ме­таллургическим переделом, ли­бо методом порошковой ме­таллургии.

К числу основных свойств инструментальных сталей (по­сле окончательной термической обработки) относят механиче­ские, тепловые, некоторые фи­зические и химические.

Зада­чей металловедов является обеспечение оптимального со­четания свойств сталей для конкретных условий службы. Повышенные требования предъ­являют к износостойкости, со­противлению пластической де­формации, усталостному раз­рушению, сопротивлению удар­ным нагрузкам, к теплостойкости и разгаростойкости. Ва­жнейшим свойством является твердость. Инструменты с низкой твердостью под действием возникающих в про­цессе работы напряжений, быстро теряют форму, разме­ры и работоспособность.

С увеличением твердости возрастает износостойкость и предел выносливости (рис. 15 и 16). Уменьшается также налипание металла на инструмент и улучшается чистота обрабатываемой по­верхности. При разных термических обработках твер­дость инструментальных сталей изменяется в широких пределах. Ее максимальные значения у некоторых инструментальных сталей (быстрорежущих) достигают 68…70 HRC.

Твердость нетеплостойких и некоторых по­лутеплостойких сталей определяется главным образом содержанием углерода в мартенсите и с повышением его концентрации увеличивается. В теплостойких сталях твердость определяется в большой степени дисперсно­стью карбидов и интерметаллидов.

Такие факторы, как величина исходного зерна и распределение первичных карбидов по размерам, на твердость не влияют вообще. Однако величина зерна оказывает значительное влияние на прочность и вязкость стали.

Таблица 11

Химический состав инструментальных сталей

Сталь C Si Cr W Mo V Другие элементы
Нетеплостойкие стали
У10 У12 У13 7Х3 6ХС ХВГ 0,95… 1,05 1,15… 1,25 1,25… 1,35 0,65… 0,75 0,6…0,7 0,90… 1,05 0,15… 0,3 0,15… 0,3 0,15… 0,3 0,15… 0,35 0,6… 1,0 0,15… 0,35 0,15 0,15 0,15 3,2… 3,8 1,0… 1,3 0,9… 1,2 - - - - - 1,2… 1,6 - - - - - - - - - - - - 0,15…0,3 Mn 0,15…0,3 Mn 0,15…0,3 Mn 0,15…0,4 Mn 0,15…0,4 Mn 0,8…1,1 Mn
Полутеплостойкие стали
Х12ВМ 6ХВ2С 9Х18 Х18МФ 5ХГМ 20ХНМ 2,0…2,2 0,55… 0,65 0,9…1,0 1,17… 1,25 0,50… 0,60 0,2 0,20… 0,40 0,5…0,8 0,5…0,9 0,5…0,9 - - 11,0… 12,5 1,0…1,3 17,0… 19,0 17,5… 19,0 0,6…0,9 0,5…0,8 0,5… 0,8 2,2… 2,7 - - - - 0,6… 0,9 - - 0,5… 0,8 0,15… 0,3 0,15… 0,3 0,15…0,30 - - 0,1… 0,2 - - - 0,15…0,4 Mn - - 1,2…1,6 Mn 1,4…1,8 Ni 0,5…0,8 Mn
Теплостойкие стали (быстрорежущие)
Р9 Р18 Р6М5 Р8М3 4Х2В5МФ 4Х5В2ФС Р12Ф4К5 Р6М5К5 0,85… 0,95 0,70… 0,80 0,80… 0,85 0,80… 0,90 0,3…0,4 0,35… 0,45 1,25… 1,40 0,80… 0,88 - - - - - 0,8…1,1 - - 3,8…4,4 3,8…4,4 3,8…4,4 3,6…4,0 2,2…3,0 4,5…5,5 3,5…4,0 3,8…4,3 8,5… 10,0 17,0… 18,5 5,5… 6,5 7,6… 8,4 4,5… 5,5 2,4… 2,6 12,5… 14,0 6,0… 7,0 До 1,0 До 1,0 5,0… 5,5 3,0… 3,5 - - до 1,0 4,8… 5,8 2,0… 2,6 1,0… 1,4 1,7… 2,1 1,6… 1,9 0,2… 0,5 0,8… 1,2 3,2… 3,8 1,7… 2,2 - - - - - 0,15…0,5 Mn 5,0…6,0 Со 4,8…5,3 Со
                   

Таблица 12

Режимы термических обработок инструментальных сталей

различного назначения

  Сталь Tзак, 0С Tотп, 0С Твердость HRC Назначение инструмента
Стали для металлорежущих инструментов
Р9 Р18 1220…1240 1270…1290 550…570 550…570 63…65 63…65 Резцы, резцовые головки, фрезы, свер­ла, метчики, плашки, ножовочные полотна и др.­
Р12ФЗ 1235…1250 550…570 64,5…66 То же
Р6М5 1200…1220 555…565 63…65 »»
Р8МЗ 1230…1245 560…570 60…61 Напильники для обработки твердых металлов
9Х18 1050…1075 220…250 57…60 Ножовки для пищевой промышленности ­
Х18МФ 1050…1075 220…250 58…60 То же
6ХС 900…920 180…200 54…58 Ножи для резки табака и кожи
Стали для измерительных инструментов
9ХС 840…860 140…180 63…64 Измерительные плитки
ХВГ 830…850 140…170 63…64 То же
20Х 790…810 150…180 61…63 Шаблоны, линейки, лекала
Штамповые стали для холодного деформирования
У10 810…825 180…200 57…59 Вытяжные штампы
У12 810…835 180…200 57…59 То же
Х12ВМ 1080…1100 150…180 62…63 Вырубные штампы
7ХГ2ВМ 870…890 325…350 52…54 Для пресс-форм полимерных материалов, для вырубных и отрезных штампов
Штамповые стали для горячего деформирования
5ХГМ 820…860 500…540 40…46 Для молотовых штампов
4Х2В5МФ 1050…1080 600…650 48…50 Штампы для деформирования легированных сталей ­
4Х5В2ФС 1030…1060 580…620 48…50 То же
20ХНМ 820…840 220…230 57…58 Для пресс-форм полимерных материалов

Повышение твердости может приводить и к повышению стойкости инструмента связь между твердостью и прочностью, наблю­дающаяся обычно в конструкционных сталях, в инстру­ментальных может наблюдаться лишь при низких зна­чениях этих свойств.

Рис. 15. Удельный износ (по массе) быстрорежущих сталей в зависимости от твердости (резание стали 45 со скоростью 20…25 м/мин, сечение стружки 0,2х0,2 мм)

Рис. 16. Механические свойства инструментальных ста­лей

в зависимости от температуры отпуска

Для инструментов с повышенными требованиями к вязкости высокую твердость создают обычно лишь в поверхностных слоях, т. е. в рабочей кромке инструмента, а в его сердцевине обеспечивают высокую вязкость, что является выгодным, так как удар­ные нагрузки передаются на всю площадь сечения инст­румента.

Очень важным свойством для инструментальных ста­лей является сопротивление хрупкому разрушению, на которое влияют не только содержание углерода в мар­тенсите и количество остаточного аустенита, но также величина зерна, структура границ зерен, дисперсность и распределение карбидов. С увеличением размеров зер­на и усилением неоднородности в распределении карби­дов прочность инструментальных сталей снижается.

Для определения прочности инструментальных ста­лей применяют обычно испытания на изгиб и реже на кручение. Испытания на изгиб создают напряженное со­стояние, аналогичное возникающему при работе инст­румента, и более точно, чем испытания на растяжение и сжатие, отражают влияние структуры (следовательно, состава и термической обработки) на свойства.

Сопротивление усталостному разрушению важно для инструментальных сталей, используемых для штампового инструмента, работающего при знакопеременных на­грузках.

Вязкость характеризует сопротивление образо­ванию трещин и их распространению под действием ударных нагрузок. При повышении вязкости возрастает износостойкость рабочей кромки. В сталях высокой твердости для повышения вязкости применяют легиро­вание элементами, измельчающими зерно.

Под теплостойкостью понимают способность стали сохранять структуру и свойства, необходимые для ра­боты инструмента при нагреве кромки в процессе экс­плуатации. Повышение теплостойкости достигается пу­тем комплексного легирования, обеспечивающего боль­шее количество упрочняющих фаз (карбидов и интерметаллидов). Так, например, легирование кобаль­том быстрорежущей стали приводит к повышению ее теплостойкости с 610…615 °С до 640…650 °С, что позволяет повысить скорости резания и стойкость режущих инструментов. Такое легирование приводит одновременно и повышению ударной вязкости. Теплостойкость оп­ределяется по температуре нагрева, при которой начина­ет быстро развиваться необратимое изменение структу­ры, приводящее к изменению свойств и унижению стойкости инструмента. Определяют теплостойкость пу­тем измерений холодной и горячей твердости.

Разгаростойкость (сопротивление термической уста­лости) определяется сопротивлением стали образованию поверхностных трещин под нагрузкой при многократном нагреве и охлаждении. Общепринятого метода испытаний разгаростойкости нет. Чаще всего испытывают цилиндриче­ские образцы, подвергнутые многократному нагреву и ох­лаждению. Разгаростойкость ухудшается при повышении твердости, если это сопровож­дается снижением вязкости. Более высокую разгаростойкость имеют стали с меньшим содержанием углерода.

Из физических свойств ин­струментальных сталей наибо­лее важное значение имеют тепловое расширение и устой­чивость против прилипания об­рабатываемого металла к ин­струменту. Из химических свойств главное— окалиностойкость.

Износостойкость сталей зависит от структуры инст­рументальной стали, свойств обрабатываемого материа­ла и условий обработки, а также от прокаливаемости стали, определяющей распределение твердости по сече­нию инструмента (рис. 17). При одинаковых условиях охлаждения прокаливаемость зависит от состава аустенита. Прокаливаемость хорошая у высоколегированных теплостойких сталей и полутеплостойких, у менее леги­рованных и углеродистых сталей (нетеплостойких) она гораздо ниже.

Стали этой группы делятся на углеродистые, низколеги­рованные и высоколегированные (быстрорежущие).

Углеродистые стали после закалки имеют высокую твердость (60…63 HRC), которая сохраняется при низ­ком отпуске (150…180°С). Но твердость углеродистых сталей при нагреве выше 190…200 °С резко падает, по­этому их используют при малой скорости резания не очень твердых материалов. Применяют углеродистые ста­ли для инструментов небольших размеров (зенкеры, свер­ла, пилы для ручных ножовок и др.).

Углеродистые стали значительно уступают тепло­стойким в износостойкости, и их использование резко сокращается, несмотря на преимущества, заключающие­ся в большой вязкости, хорошей обрабатываемости и низкой стоимости.

Рис. 17. Прокаливаемость углеродистой инструментальной стали У12

Рис. 18. Твердость сталей Р18, Р12Ф3, Р14Ф4 и прочность

стали Р12Ф3 при нагреве

По сравнению с углеродистыми легированные стали (11ХФ, 13Х, 9ХФ и др.) лучше прокаливаются, и это предотвращает деформацию инструмента и его коробле­ние при термической обработке. Инструменты из этих сталей рекомендуется закаливать в масло или проводить ступенчатую закалку с промежуточным охлаждением в горячей среде). Стали 9ХС, ХВГС имеют повышенную теплостойкость (до 250…260 °С), их применяют для ин­струментов большого сечения (ручных сверл, разверток и т. п.). Но в отожженном состоянии они имеют повышен­ную твердость и их обработка резанием и давлением затруднена.

Быстрорежущие стали применяют для изготовления большинства инструментов. От других сталей их отлича­ет, прежде всего, высокая теплостойкость, поэтому их можно использовать при резании с большой скоростью. Применение быстрорежущих сталей вместо углероди­стых позволяет повысить скорость резания в 2…4 раза, а при их интерметаллидном упрочнении - в 5…6 раз. При этом стойкость инструмента возрастает в 10…40 раз.

Высокая теплостойкость быстрорежущих сталей обу­словлена специальным легированием (W, Мо, V, Со). Наиболее используемые марки - Р18, Р12, Р6М5, Р6М3. Их применяют для изготовления всевозможных резцов, предназначенных для резания труднообрабатываемых материалов.

Для инструментов, от которых требуется более длительная стойкость, применяют стали с твердостью 66…68 HRC (Р6К5, Р9К10, Р18К5Ф2 и др.).

Сочетание высокой твердости с высокой теплостой­костью обеспечивается закалкой с высоких температур (1200…1300 °С) и последующим отпуском при 550…560 °С а для некоторых сталей и при 600…650 °С.

При­чем отпуск рекомендуется двух- и трехкратный.

Высокая твердость и теплостойкость этих ста­лей обусловлена выделе­нием карбидов типа МС, М23С6, М6С, которые при­сутствуют в количестве до 25…30 % (например, в стали Р18), либо интерметаллидов типа Co7W6.

Как правило, при закалке быстрорежущих сталей полного превращения не наблюдается, в них сохра­няется остаточный аустенит, снижающий режу­щие свойства. Поэтому иногда для таких сталей применяют обработку хо­лодом.

Термомеханическую обработку для быстрорежущих сталей применяют редко, так как выигрыш прочности не­значителен. Для улучшения поверхностного слоя инстру­ментов применяют низкотемпературное цианирование, азотирование, нитроцементацию с последующим оксиди­рованием и другие методы. В результате на поверхности инструмента создается слой, характеризующийся повы­шенной твердостью, износостойкостью и теплостойкостью.

Следует отметить, что большинство марок быстроре­жущих сталей содержит дорогой и дефицитный воль­фрам. Поэтому в настоящее время проводится интенсив­ная разработка новых безвольфрамовых марок быстро­режущих сталей.


Понравилась статья? Добавь ее в закладку (CTRL+D) и не забудь поделиться с друзьями:  



double arrow