Применение сейсморазведки при решении геологических задач

Рис.2.53. Временной (А) и глубинный (Б) разрезы ОГТ на оползневом участке

Рис. 2.52. Временной сейсмический разрез на участке распространения пластовых льдов (Ямал, Бованенковское газоконденсатное месторождение)

Рис. 2.50. Корреляция сейсмотрасс отфильтрованных однократных волн

I – IV – сейсмотрассы, А,Б,В – пакеты однократных волн маркирующих горизонтов

Последующий процесс многоуровневой интерпретации сейсмических записей сводится к анализу годографов, то есть по сейсмотрассам в каждой точке приема анализируются, годографы и таким образом прослеживается непрерывность той или иной границы. Обязателен учет влияния ЗМС, который позволяет привести сейсмотрассы к некой условной границе (рис.2.51).

Рис. 2.51. Влияние ЗМС на кинематику отраженных волн (а) и пример приведения годографа, построенного по экспериментальным данным, к исправленным значениям (б)

1,2 - годографы, построенные по экспериментальным (1) и исправленным значениям (2)

Конечным результатом сейсмической интерпретации является восстановление волновой картины. Выполняется монтаж сейсмотрасс, который дает качественную картину о строении геологического разреза исследуемого участка земной коры. Этот монтаж сейсмотрасс носит название временного разреза (рис. 2.52).

Однократное суммирование (база 10м). Поверхностные условия – маломощный СТС, ниже промежуточный мерзлый слой

Следует отметить, что временный разрез не позволяет оценить глубины залегания тех или иных пластов. Поэтому последующей операцией сейсмической интерпретации является перевод временного разреза в глубинный, на котором расстояние между точкой наблюдения и отражающей границей соответствует толщине по вертикали. Перевод временного разреза в глубинный требует машинной обработки. Используется формула:

Fo(t)*t=Фо(t) (2.29), где

Фо(t) – функция глубинного разреза Fo – функция сейсмотрасс однократных волн.

При построении глубинных разрезов обязателен учет априорных данных, к которым относятся в первую очередь результаты бурения и других геофизических методов. Пример сопоставления временного и глубинного разрезов приведен на рис.80.

1 – кровля карбонатных отложений, 2 – поверхность смещения, 3 – кровля глин, 4 – дифракционная волна

Геологическая интерпретация заключается в переводе сейсмогеологического разреза в геологический. Предусматривается определение количественных показателей стратиграфического разреза, то есть глубины залегания стратиграфических слоев, изменения их мощности (толщины) и строения. Обязательно определение скорости распространения упругих волн для каждого интервала между отражающими границами, сопоставление данных с бурением, электроразведкой и гравиразведкой.

Временные и глубинные разрезы строятся с помощью специальных компьютерных программ. Поэтому современные технологии сейсморазведки предусматривают регистрацию сейсмических данных в специальных форматах, чтобы обрабатывающие системы прежде всего могли автоматически распознавать и считывать первичную информацию, относящуюся к «описанию» всех необходимых для сейсмических трасс данных (дата, участок, профиль, регистрирующие параметры и.т.д.). Как правило, компьютерные программы обработки сейсморазведочных данных включают операции обработки результатов и МПВ и МОВ.

Процесс обработки данных сейсморазведки МПВ предусматривает: 1) чтение, визуализацию и фильтрацию сейсмограмм, 2) редактирование трасс и ввод поправок, 3) корреляцию первых вступлений волн, 3) построение и редактирование годографов, 4) определение сейсмических скоростей и построение преломляющих границ. Обработка производится в интерактивном (диалоговом) режиме и при возникновении каких-либо невязок или сомнений возможен возврат на несколько шагов назад.

Граф обработки (последовательность процедур) МОВ-ОГТ содержит определенную последовательность обязательных процедур, состоящих из: 1) ввода полевых данных и присвоения им геометрии, 2) сортировка трасс по общим точкам (ОТВ) или пунктам (ОПВ) возбуждения и их накопление, 3) то же по ОГТ с вводом априорных кинематических поправок, частотной и пространственной фильтрацией и последующим суммированием этих трасс (трасс ОГТ).

В наибольших объемах сейсморазведка применяется для изучения структурных форм геологических разрезов. Особое внимание уделяется геологическим структурам и зонам, где можно предполагать наличие нефти и газа. При этом, ввиду высокой стоимости сейсморазведочных работ принято их планировать для решения только таких задач, которые не могут быть решены другими методами.

При изучении глубинных геологических структур, перспективных на нефть и газ, основное значение имеет МОВ-ОГТ. Наиболее эффективны эти технологии на акваториях, где бурение скважин обходится очень дорого, а качество сейсмических данных значительно лучше, чем на суше.

Применение сейсморазведки помимо структурной и нефтегазовой геологии эффективно в рудной и угольной геологии. С помощью как МПВ, так и МОВ удается регистрировать волны, возникающие в ослабленных зонах, связанных с тектоническими нарушениями. Последние важны для изучения в рудной геологии в связи с приуроченностью к тектоническим зонам рудных скоплений, а, в угольной геологии опережающий прогноз тектонических разрывов, особенно малоамплитудных, необходим при проектировании строительства и в процессе эксплуатации шахт и карьеров, поскольку непредвиденная встреча тектонических нарушений резко снижает эффективность добычи углей.

В инженерной геологии и гидрогеологии сейсморазведкой изучают особенности строения верхней части разреза, в связи с чем наблюдают преимущественно проходящие и преломленные волны, реже – отраженные. С поиощью МПВ решаются задачи отбивки границ между покровными и коренными отложениями, определения уровня грунтовых вод, оценки карстово-суффузионной опасности, строения дна водоемов и т.д.

· Проектное задание раздела 2-Б.

1) Дать характеристику сейсмоволнового поля. Описать свойства идеально упругой среды. Что выражает закон Гука.

2) Представить схематическое изображение типов волн, используемых в сейсморазведке.

3) Сформулировать основные принципы геометрической сейсмики и указать их ограничение.

4) Охарактеризовать построение и анализ годографов отраженных и преломленных волн. Объяснить какую роль они играют при анализе полевых сейсморазведочных материалов.

5) Объяснить почему основным видом регистрации сейсмических колебаний является цифровая запись и какие последовательные преобразования сейсмического колебания происходят в цифровом сейсморегистрирующем канале.

6) Назвать основные блоки цифровой сейсмической станции и пояснить их назначение, а также процесс производства записи сигналов в сейсмических регистраторах.

7) Объяснить в чем особенность возбуждения поперечных волн и какими принципами руководствуются при выборе оптимальных условий возбуждения сейсмических колебаний.

8) Раскрыть сущность метода общей глубинной точки (ОГТ) и объяснить как определяется степень подавления многократных отраженных волн при работе этим методом.

9) Дать определение временного разреза. Объяснить принципы его построения и какие дополнительные данные необходимо ввести для преобразования временного разреза в глубинный.

10) Назвать основные методы сейсмических исследований в скважинах и объяснить для решения каких разведочных задач каждый из них применяется.

11) Объяснить при решении каких геологических задач применяются сейсморазведочные методы.

12) Составить реферат о нормативных требованиях техники безопасности при производстве сейсморазведочных работ.

· Тесты рубежного контроля раздела 2-Б.

1.

Вопрос: Какая среда называется идеально упругой?

Ответ: Геологическая среда, в которой распространяются упругие волны. Природные среды, которые после воздействия деформаций полностью восстанавливают свою первоначальную форму. Геологические образования, где происходят некоторые изменения их объема и формы. Массивы горных пород с необратимыми изменениями первоначальной структуры.

2.

Вопрос: При каких условиях геологическая граница является одновременно отражающей и преломляющей?

Ответ: При условии контакта пород, характеризующихся различной скоростью распространения упругих волн. В геологических разрезах со стратиграфическим несогласием различных возрастных комплексов. При условии, что породы нижележащих слоев имеют большую скорость распространения упругих волн, чем вышележащие. При условии наличия в геологических разрезах разрывных тектонических нарушений.

3.

Вопрос: Из каких основных блоков состоит сейсморазведочная станция?

Ответ: Из блоков регистрации, кодирования и воспроизведения сейсмоволновых пакетов. Из системы идентичных блоков сейсморегистрирующих каналов (по числу сейсмоприемников), включающих сейсмические усилители с частотными фильтрами и аналого-цифровые преобразователи - АЦП, а также блока формирователя импульса запуска, блока контроллера и блока ЭВМ (полевого компьютера). Из сейсмоприемников, сейсмической косы и компьютера.

4.

Вопрос: Что собой представляет скважинная сейсморазведка?

Ответ: Изучение геологического разреза по системе поверхность-скважина при возбуждении упругих волн на удалении от скважины и регистрации упругих волн в ее стволе. Изучение разрезов скважин методом акустического каротажа. Это сейсморазведка, когда возбуждение упругих волн осуществляется в скважинах.

5.

Вопрос: Чем временной разрез отличается от глубинного?

Ответ: По разным масштабам построения. По более детальной конфигурации фазокорреляционных линий. По вертикальным шкалам напряжений: у первого по оси ординат время, а у второго глубина геологических границ. По условиям регистрации различных типов волн.

· Критерии оценки раздела 2-Б.

Контрольная работа.

· Литература к разделу 2-Б.

Основная:

1. Геофизика: учебник /Под ред. В.К. Хмелевского. - М.: КДУ, 2007. – С. 109-162.

2. Знаменский В.В. Общий курс полевой геофизики. Учебник. – М.: Недра, 1989. – С. 224-386, 432-513.

3. Боганик Г.Н., Гурвич И.И. Сейсморазведка: Учебник для вузов. Тверь: Изд-во АИС, 2006. 744 с.

Дополнительная:

1. Геофизические методы исследования. (Под редакцией В.К.Хмелевского). Учебное пособие. – М.: Недра, 1988. – С. 137-201.

2. Федынский В.В. Разведочная геофизика. Учебное пособие. – М.: Недра, 1967. – С. 401-435.

3. Гурвич И.И. Сейсморазведка. Учебник. – М.: Недра, 1975. С. 26-56, 105-141, 144-398.

4. Сейсморазведка: Справочник геофизика; Под ред. В.П.Номоконова. М.: Недра. 1990. Кн.1. 336 с., Кн.2. 400 с.

Модуль 3. Ядерная геофизика и терморазведка

· Комплексная цель.

Получение слушателями системы знаний о радиоционном и тепловом полях Земли, методах (дистанционных, наземных (полевых) и скважинных) и средствах их изучения для возможной дальнейшей работы в полевых экспедициях, научных лабораториях, вычислительных центрах при проведении научно-исследовательских и производственных геологических работ, включая основные приемы качественной и количественной интерпретации полевых наблюдений и их геологическое истолкование.

· Содержание модуля Ядерная геофизика

Лекция 13. Тема: 0бщие сведения о радиоактивности. Радиометрические методы для решения задач поисков и разведки полезных ископаемых, в геоэкологии, инженерной геологии и др.

Ядерная геофизика – раздел разведочной геофизики, основанный на изучении распределения в земной коре естественных и искусственно созданных радиационных полей, изучаемых двумя основными группами методов: а) радиометрическими, основанными на измерении естественных α-, β-, γ - излучений горных пород и обусловленных кларковыми или аномальными содержаниями в них радионуклидов, или концентрацией изотопов радона в почвенном воздухе, б) ядерно-физическими, предусматривающими поэлементный анализ горных пород путем изучения вызванной радиоактивности.

Поле ионизирующих излучений (естественной радиоактивности) присуще Земле, как космическому объекту, и складывается из: 1) космического излучения, 2) радиоактивного распада элементов земной коры, 3) дегазации радиоактивных газов, выходящих на поверхность (радон Rn, торий Th). В результате на дневной поверхности формируется радиационный фон. В этом фоне доля космического излучения около 50% и составляет 3-6 мкР. С увеличением высоты космический радиационный фон возрастает в среднем на 1,5 мкР на каждый километр отметки рельефа местности. Остальная доля радиационного фона приходится на естественную радиоактивность горных пород. При этом, радиоактивность этих пород неодинакова. Средними (нормальными) по радиоактивности считаются природные объекты, в которых кларковое содержание не превышает 2,5 (2,5 г/т). Повышенная радиоактивность обусловливается наличием урана с соответствующим образованием радиоактивных газов (радона и тория). Тысячная доля содержания урана в общей массе создает радиоактивность в 5 мкР/час. Радиоактивный фон повышается и в участках земной коры, содержащих кроме урана и тория, калий, концентрация которого в земной коре превышает более чем в 2000 раз концентрацию тория и более чем в 10000 раз концентрацию урана.

Радиоактивному распаду подвергается достаточно большое количество химических элементов, в основном с порядковым номером в таблице Менделеева большим 82. Известно более 230 радиоактивных изотопов (ядра атомов различным числом нейтронов). Однако основной вклад в естественную радиоактивность вносят три радиоактивных элемента уран (U), торий (Th) и калий (К). Они находятся в горных породах и других природных объектах в виде изоморфных примесей и самостоятельных минералов. Их вклад следующий: К 60%, U 30%, Th 10%. Интенсивность естественного -излучения (J γ) наибольшая у К и наименьшая у Th. Излучение происходит при различных энергиях (рис 3.1).


Понравилась статья? Добавь ее в закладку (CTRL+D) и не забудь поделиться с друзьями:  



double arrow
Сейчас читают про: