Студопедия
МОТОСАФАРИ и МОТОТУРЫ АФРИКА !!!


Авиадвигателестроения Административное право Административное право Беларусии Алгебра Архитектура Безопасность жизнедеятельности Введение в профессию «психолог» Введение в экономику культуры Высшая математика Геология Геоморфология Гидрология и гидрометрии Гидросистемы и гидромашины История Украины Культурология Культурология Логика Маркетинг Машиностроение Медицинская психология Менеджмент Металлы и сварка Методы и средства измерений электрических величин Мировая экономика Начертательная геометрия Основы экономической теории Охрана труда Пожарная тактика Процессы и структуры мышления Профессиональная психология Психология Психология менеджмента Современные фундаментальные и прикладные исследования в приборостроении Социальная психология Социально-философская проблематика Социология Статистика Теоретические основы информатики Теория автоматического регулирования Теория вероятности Транспортное право Туроператор Уголовное право Уголовный процесс Управление современным производством Физика Физические явления Философия Холодильные установки Экология Экономика История экономики Основы экономики Экономика предприятия Экономическая история Экономическая теория Экономический анализ Развитие экономики ЕС Чрезвычайные ситуации ВКонтакте Одноклассники Мой Мир Фейсбук LiveJournal Instagram

Алгоритм приведения графа к ярусно-параллельной форме




Ярусно-параллельная форма графов

Граф, не имеющий контуров, может быть представлен в ярусно-параллельной форме. Ярусно-параллельная форма это такой вид графа, у которого в верхний нулевой ярус помещены вершины, имеющие только исходящие дуги; в нижний ярус помещены вершины, имеющие только входящие дуги. На k-том ярусе помещены вершины, которые имеют входящие дуги из предыдущих ярусов, среди которых хотя бы одна дуга из (k-1)-того яруса.

Количество вершин в ярусе определяет ширину яруса. Наибольшая ширина яруса определяет ширину графа в ярусно-параллельной форме. Количество ярусов определяет высоту графа в ярусно-параллельной форме.

1. Составляется матрица смежности графа.

2. Матрица смежности просматривается в поисках нулевых столбцов. Вершины, которым соответствуют нулевые столбцы, помещаются в нулевой ярус.

3. Из матрицы смежности столбцы и строки, соответствующие вершинам нулевого яруса.

4. Повторяется п.2 данного алгоритма до тех пор, пока не будут охвачены все вершины.

5. По исходной матрице смежности восстанавливаются дуги между вершинами.

ПРИМЕР

Привести граф к ярусно-параллельной форме.

Рис. 3.8 Граф

1. Матрица смежности имеет вид:

 
         
               
           
             
             
               
               
           

2. В нулевой ярус помещаются вершины 3 и 8.

3. Из матрицы смежности вычеркиваются строки и столбцы, соответствующие вершинам 3 и 8:

 
     
           
         
         
           
           

4. В первый ярус помещаются вершины 4 и 5.




5. Из матрицы смежности вычеркиваются строки и столбцы, соответствующие вершинам 4 и 5:

 
 
       
       
       

6. Во второй ярус помещается вершина 1.

7. Из матрицы смежности вычеркиваются строка и столбец, соответствующие вершине 1:

 
   
     
     

8. В третий (последний) ярус помещаются вершины 2,6 и 7.

Таким образом, граф может быть представлен в ярусно-параллельной форме:

 
 


Рис. 3.9 Граф

Высота графа - 4 яруса; ширина -3.





Дата добавления: 2014-02-09; просмотров: 3029; Опубликованный материал нарушает авторские права? | Защита персональных данных | ЗАКАЗАТЬ РАБОТУ


Не нашли то, что искали? Воспользуйтесь поиском:

Лучшие изречения: Сдача сессии и защита диплома - страшная бессонница, которая потом кажется страшным сном. 8991 - | 7273 - или читать все...

Читайте также:

 

18.206.12.79 © studopedia.ru Не является автором материалов, которые размещены. Но предоставляет возможность бесплатного использования. Есть нарушение авторского права? Напишите нам | Обратная связь.


Генерация страницы за: 0.003 сек.