Студопедия
Карамелька - детский развивающий канал


Авиадвигателестроения Административное право Административное право Беларусии Алгебра Архитектура Безопасность жизнедеятельности Введение в профессию «психолог» Введение в экономику культуры Высшая математика Геология Геоморфология Гидрология и гидрометрии Гидросистемы и гидромашины История Украины Культурология Культурология Логика Маркетинг Машиностроение Медицинская психология Менеджмент Металлы и сварка Методы и средства измерений электрических величин Мировая экономика Начертательная геометрия Основы экономической теории Охрана труда Пожарная тактика Процессы и структуры мышления Профессиональная психология Психология Психология менеджмента Современные фундаментальные и прикладные исследования в приборостроении Социальная психология Социально-философская проблематика Социология Статистика Теоретические основы информатики Теория автоматического регулирования Теория вероятности Транспортное право Туроператор Уголовное право Уголовный процесс Управление современным производством Физика Физические явления Философия Холодильные установки Экология Экономика История экономики Основы экономики Экономика предприятия Экономическая история Экономическая теория Экономический анализ Развитие экономики ЕС Чрезвычайные ситуации ВКонтакте Одноклассники Мой Мир Фейсбук LiveJournal Instagram

Формула Муавра. Извлечение корня из комплексного числа




Используя формулу умножения комплексных чисел (3.3), получим формулу возведения комплексного числа в степень, называемую формулой Муавра.

(3.5)

Из нее следует, что для возведения комплексного числа в любую натуральную степень его модуль нужно возвести в эту степень, а аргумент умножить на показатель этой степени.

Перейдем к процедуре извлечения корней. Известно, что в множестве действительных чисел не из всякого действительного числа можно извлечь корень. Например, не существует. В множестве комплексных чисел дело обстоит иначе.

Пусть . Комплексное число называется корнем -й степени из , если , т.е.

или

.

Модуль комплексного числа определяется однозначно, поэтому или (здесь имеется в виду арифметический корень).

Аргумент комплексного числа определяется с точностью до . Следовательно, , а .

Таким образом, комплексное число , которое является корнем -й степени из имеет вид:

(3.6)

Придавая различные значения, мы не всегда будем получать различные корни. Действительно, можно записать в виде , где . Тогда ,

Т.е. значение аргумента при данном отличается от значения аргумента при на число, кратное . Следовательно, в формуле (2) можно ограничится лишь значениями . При таких значениях получаются различные корни, так как разность между их аргументами по абсолютной величине меньше .

Итак, для каждого ненулевого числа существует ровно корней -й степени из .

Пример. Вычислить .

Представим число, стоящее под знаком корня в тригонометрической форме.

.

Извлечем далее корень третьей степени из этого комплексного числа

.

Отсюда полагая, что , получим

;

;

.





Дата добавления: 2014-02-09; просмотров: 5383; Опубликованный материал нарушает авторские права? | Защита персональных данных | ЗАКАЗАТЬ РАБОТУ


Не нашли то, что искали? Воспользуйтесь поиском:

Лучшие изречения: Для студента самое главное не сдать экзамен, а вовремя вспомнить про него. 9095 - | 6852 - или читать все...

Читайте также:

 

54.226.73.255 © studopedia.ru Не является автором материалов, которые размещены. Но предоставляет возможность бесплатного использования. Есть нарушение авторского права? Напишите нам | Обратная связь.


Генерация страницы за: 0.002 сек.