Принцип Ферма

Возьмите литровую банку и монету. Положите монету под дно пустой банки. Она видна как сверху, так и через боковую стенку банки. Теперь налейте в банку воду. Монета видна сверху, но не видна через боковую стенку банки. Почему? Положите монету внутрь банки с водой. Что изменилось и почему?

Пьер Ферма сформулировал принцип (то есть, общее утверждение), которому подчиняется распространение света в различных средах. Принцип, как и аксиома не доказывается. Из него получаются следствия, которые проверяются опытным путем. Сформулируем его.

Пусть свет распространяется между двумя точками по некоторому пути. На элементе пути ΔS скорость света равнялась v. Она может быть различна на разных участках. Тогда затраченное на этот участок время Полное время распространения света равно сумме времен, потраченных на все участки. На математическом языке это записывается как Ферма предположил, что это время должно быть минимальным из возможных. То есть, перебрав все траектории, соединяющие начальную и конечную точку, мы должны найти ту, время движения света по которой минимально. Именно по этому пути «пойдет» световой луч. Величина называется оптической длиной пути. Величину n нельзя вынести за знак суммы, потому что она может быть различной на разных участках пути. Именно оптическая длина пути, а не геометрическая длина, должна быть наименьшей. Отсюда же следует принцип изохронизма световых лучей. Если из точки А в точку В свет распространяется по нескольким путям, то время распространения по ним одинаково.

Попробуем получить из этого принципа аксиомы геометрической оптики.

Прямолинейное распространение луча в однородной среде. Если луч движется из А в В без отражений в среде с постоянным показателем преломления n, то Это означает, что нужно выбрать путь из А в В минимальной геометрической длины. Ясно, что это будет прямая линия.

Закон зеркального отражения. Пусть свет пришел из А в В, испытав отражение в плоском зеркале.

Найдем точку О на зеркале, в которой произошло отражение. Отразив в зеркале точку В и получив точку В’, приходим к выводу, что длина ломаной AOB’ равна длине AOB. Очевидно, что AOB’ минимально по длине, когда это прямой отрезок. Получаем два вертикальных угла, один из которых обозначен двумя дугами, поэтому углы падения и преломления, обозначенные одной дугой, также должны быть равны. Точка О должна лежать в той вертикальной плоскости, в которой лежат перпендикуляры, опущенные из А и В на отражающую плоскость (иначе путь АОВ удлинится). Поэтому лучи АО и ОВ лежат в одной плоскости с перпендикуляром, опущенным в точку О.

Преломление луча на плоской границе. Пусть точки А и В лежат в средах, с показателями преломления n2 и n1 (n2>n1), разделенные плоской границей. Легко сообразить, что в этом случае прямая АВ уже не будет соответствовать наименьшему времени. Поскольку, если мы сдвинем точку, в которой свет переходит из первой среды во вторую слегка налево, то путь, который свет пройдет в «медленной среде» сократится. А путь, пройденный в «быстрой» (имеющей меньший n) примерно на столько же удлинится. Результирующее время уменьшится. И так мы будем двигаться налево до тех пор, пока укорачивание времени в верхней среде не будет полностью компенсироваться удлинением его в нижней.

Второй рисунок показывает эту ситуацию. Если мы переместимся влево на малое расстояние вдоль границы A1A2, то геометрический путь в верхней среде сократится на A2B2, а оптический на n2A2B2, в нижней среде геометрический путь удлинится на A1B1, а оптический на n1A1B1. Мы достигнем минимума времени, если оптическую длину пути уже нельзя будет уменьшать такими шажками. То есть, укорачивание верхнего оптического пути равно удлинению нижнего n1A1B1=n2A2B2. По чертежу мы видим, что и где углы обозначены одной и двумя дугами соответственно. Из равенства получим выполнение принципа Ферма приводит к известному закону преломления светового луча на границе разных сред.

Принцип Ферма представляет собой пример используемых в теоретической физике вариационных принципов. Для каждой траектории вычисляется определенная величина (в нашем случае – оптическая длина пути), после чего ищется такая траектория, на которой эта величина принимает минимальное (или максимальное) значение. Именно эта траектория и будет истинной. Подобно законам сохранения, вариационные принципы накладывают ограничения на происходящие события, делая их течение определенным. Почему законы сохранения и вариационные принципы «работают» - вопрос того же сорта, что и «Почему все тела притягиваются друг к другу всемирным тяготением».


Понравилась статья? Добавь ее в закладку (CTRL+D) и не забудь поделиться с друзьями:  



double arrow
Сейчас читают про: