Контрольные вопросы
Литература
- Основы теории цепей: Учеб. для вузов /Г.В.Зевеке, П.А.Ионкин, А.В.Нетушил, С.В.Страхов. –5-е изд., перераб. –М.: Энергоатомиздат, 1989. -528с.
- Бессонов Л.А. Теоретические основы электротехники: Электрические цепи. Учеб. для студентов электротехнических, энергетических и приборостроительных специальностей вузов. –7-е изд., перераб. и доп. –М.: Высш. шк., 1978. –528с.
- Теоретические основы электротехники. Учеб. для вузов. В трех т. Под общ. ред. К.М.Поливанова. Т.1. К.М.Поливанов. Линейные электрические цепи с сосредоточенными постоянными. –М.: Энергия- 1972. –240с.
- Что является причиной появления несинусоидальных токов и напряжений в электрических цепях?
- Какие величины и коэффициенты характеризуют периодические несинусоидальные переменные?
- Какие гармонические отсутствуют в спектрах кривых, симметричных относительно: 1) оси абсцисс; 2) оси ординат; 3) начала системы координат?
- Достаточно ли для определения величины полной мощности в цепи несинусоидального тока наличие информации об активной и реактивной мощностях?
- Для каких цепей справедлива методика расчета цепей несинусоидального тока, основанная на разложении ЭДС и токов источников в ряды Фурье?
- Не прибегая к разложению в ряд Фурье, определить коэффициенты амплитуды и формы кривой на рис. 4.
Ответ:
.
- Определить действующее значение напряжения на зажимах ветви с последовательным соединением резистора с
и катушки индуктивности с
, если ток в ней
. Рассчитать активную мощность в ветви.
Ответ: U=218 В; Р=1260 Вт.
- Определить действующее значение тока в ветви с источником ЭДС в схеме на рис. 5, если
;
.
Ответ: I=5,5 A.
| Лекция N 23. Резонансные явления в цепях несинусоидального тока. |
В цепях несинусоидального тока резонансные режимы возможны для различных гармонических составляющих. Как и при синусоидальных токах, резонанс на к-й гармонике соответствует режиму работы, при котором к-е гармоники напряжения и тока на входе цепи совпадают по фазе, иначе говоря входное сопротивление (входная проводимость) цепи для к-й гармоники вещественно.
Пусть имеет место цепь на рис. 1,а, питающаяся от источника несинусоидальной ЭДС, в которой емкость конденсатора может плавно изменяться от нуля до бесконечности.
Для к-й гармоники тока можно записать
,
где - действующее значение к-й гармоники ЭДС.
Таким образом, при изменении С величина к-й гармоники тока будет изменяться от нуля при С=0 до при , достигая максимума при резонансе (см. рис. 1,б), определяемом величиной емкости
.
Следует отметить, что, несмотря на то, что обычно с ростом порядка гармонической ЭДС ее амплитуда уменьшается, в режиме резонанса для к-й гармонической ее значение может превышать величину первой гармоники тока.
Резонансные явления используются для выделения гармоник одних частот и подавления других. Пусть, например, в цепи на рис. 2 необходимо усилить q-ю гармонику тока на нагрузке и подавить р-ю.
Для подавления р-й гармоники в режим резонанса токов настраивается контур :
.
Для выделения q-й гармоники вся цепь для нее настраивается в режим резонанса напряжений:
,
откуда при известных и
.
Отметим, что рассмотренные явления лежат в основе работы L-C -фильтров.
Особенности протекания несинусоидальных токов через пассивные элементы цепи
1. Резистор.
При ток через резистор (см. рис. 3)
,
где .
Таким образом, на резистивном элементе несинусоидальные напряжение и ток совпадают по форме и подобны друг другу. Это позволяет на практике осциллографировать форму тока с помощью регистрации напряжения на шунте.
2. Конденсатор.
Пусть напряжение на конденсаторе (рис. 4) описывается гармоническим рядом .
Коэффициент искажения кривой напряжения
Ток через конденсатор
Тогда соответствующий кривой тока коэффициент искажения
Сравнение (1) и (2) показывает, что
Отмеченное наглядно иллюстрирует рис. 5, на котором форма кривой напряжения ближе к синусоиде, чем форма кривой тока. 3. Катушка индуктивности.
совершенно аналогично можно показать, что в случае индуктивного элемента С учетом вышесказанного на практике, например в силовой полупроводниковой технике, для сглаживания выпрямленного напряжения применяют конденсаторные фильтры, а для тока – дроссели. Напряжения трехфазных источников энергии часто бывают существенно несинусоидальными (строго говоря, они несинусоидальны всегда). При этом напряжения на фазах В и С повторяют несинусоидальную кривую
Пусть для фазы А к-я гармоника напряжения
Тогда с учетом, что
Всю совокупность гармоник к от 0 до 1. Действительно,
и
2.
т.е. гармоники данной группы образуют симметричные системы напряжений обратной последовательности. 3.
Таким образом, векторы напряжений данной группы во всех фазах в любой момент времени имеют одинаковые модули и направления, т.е. эти гармоники образуют системы нулевой последовательности. Рассмотрим особенности работы трехфазных систем, обусловленные наличием гармоник, кратных трем.
где 2. Если фазы генератора соединить в открытый треугольник (см. рис. 8), то на зажимах 1-2 будет иметь место напряжение, определяемое суммой ЭДС гармоник, кратных трем:
Таким образом, показание вольтметра в цепи на рис. 8
3. Независимо от способа соединения – в звезду или в треугольник – линейные напряжения не содержат гармоник, кратных трем. При соединении в звезду это объясняется тем, что гармоники, кратные трем, как указывалось, образуют нулевую последовательность, ввиду чего исчезают из линейных напряжений, равных разности фазных. При соединении в треугольник составляющие фазных ЭДС, кратные трем, не выявляются в линейных (фазных) напряжениях, так как компенсируются падениями напряжений на собственных сопротивлениях фаз генератора. Таким образом, при соединении в треугольник напряжение генератора
и ток
В свою очередь при соединении в звезду
4. При симметричной нагрузке ток в нейтральном проводе определяется гармоническими, кратными трем, поскольку они образуют нулевую последовательность:
5. При соединении в звезду и отсутствии нейтрального провода фазные токи нагрузки не содержат гармоник, кратных трем (в соответствии с первым законом Кирхгофа сумма токов равна нулю, что невозможно при наличии этих гармоник). Соответственно нет этих гармоник и в фазных напряжениях нагрузки, связанных с токами законом Ома. Таким образом, при наличии гармоник, кратных трем, в фазных напряжениях генератора напряжение смещения нейтрали в симметричном режиме определяется этими гармониками
Сейчас читают про:
|
Для к-й гармоники тока можно записать
,
где
- действующее значение к-й гармоники ЭДС.
Таким образом, при изменении С величина к-й гармоники тока будет изменяться от нуля при С=0 до
при
, достигая максимума
при резонансе (см. рис. 1,б), определяемом величиной емкости
.
Следует отметить, что, несмотря на то, что обычно с ростом порядка гармонической ЭДС ее амплитуда уменьшается, в режиме резонанса для к-й гармонической ее значение
может превышать величину первой гармоники тока.
Резонансные явления используются для выделения гармоник одних частот и подавления других. Пусть, например, в цепи на рис. 2 необходимо усилить q-ю гармонику тока на нагрузке и подавить р-ю.
Для подавления р-й гармоники в режим резонанса токов настраивается контур
:
.
Для выделения q-й гармоники вся цепь для нее настраивается в режим резонанса напряжений:
,
откуда при известных
и
.
Отметим, что рассмотренные явления лежат в основе работы L-C -фильтров.
Особенности протекания несинусоидальных токов через пассивные элементы цепи
1. Резистор.
При
ток через резистор (см. рис. 3)
,
где
.
Таким образом, на резистивном элементе несинусоидальные напряжение и ток совпадают по форме и подобны друг другу. Это позволяет на практике осциллографировать форму тока с помощью регистрации напряжения на шунте.
2. Конденсатор.
Пусть напряжение на конденсаторе (рис. 4) описывается гармоническим рядом
.
.
.
, т.е. конденсатор искажает форму кривой тока по сравнению с напряжением, являясь сглаживающим элементом для последнего.
Принимая во внимание соотношение между напряжением и током для катушки индуктивности (рис. 6)
, т.е. кривая напряжения искажена больше, чем кривая тока. Этому случаю будет соответствовать рис. 5 при взаимной замене на нем кривых напряжения и тока. Таким образом, катушка индуктивности является сглаживающим элементом для тока.
напряжения на фазе А со сдвигом на треть периода Т основной гармоники:
.
.
, для к-х гармонических напряжений фаз В и С соответственно можно записать:
можно распределить по трем группам:
- гармоники данной группы образуют симметричные системы напряжений, последовательность которых соответствует последовательности фаз первой гармоники, т.е. они образуют симметричные системы напряжений прямой последовательности.
.
. Для этих гармоник имеют место соотношения:
. Для этих гармоник справедливо
1. Если фазы генератора соединены в треугольник, то при несинусоидальных фазных ЭДС сумма ЭДС, действующих в контуре (см. рис. 7) не равна нулю, а определяется гармониками, кратными трем. Эти гармоники вызывают в замкнутом треугольнике генератора ток, даже когда его внешняя цепь разомкнута:
,
, а
- сопротивление фазы генератора для i-й гармоники, кратной трем.
.
.
.
.
.
.





