Студопедия
МОТОСАФАРИ и МОТОТУРЫ АФРИКА !!!

Авиадвигателестроения Административное право Административное право Беларусии Алгебра Архитектура Безопасность жизнедеятельности Введение в профессию «психолог» Введение в экономику культуры Высшая математика Геология Геоморфология Гидрология и гидрометрии Гидросистемы и гидромашины История Украины Культурология Культурология Логика Маркетинг Машиностроение Медицинская психология Менеджмент Металлы и сварка Методы и средства измерений электрических величин Мировая экономика Начертательная геометрия Основы экономической теории Охрана труда Пожарная тактика Процессы и структуры мышления Профессиональная психология Психология Психология менеджмента Современные фундаментальные и прикладные исследования в приборостроении Социальная психология Социально-философская проблематика Социология Статистика Теоретические основы информатики Теория автоматического регулирования Теория вероятности Транспортное право Туроператор Уголовное право Уголовный процесс Управление современным производством Физика Физические явления Философия Холодильные установки Экология Экономика История экономики Основы экономики Экономика предприятия Экономическая история Экономическая теория Экономический анализ Развитие экономики ЕС Чрезвычайные ситуации ВКонтакте Одноклассники Мой Мир Фейсбук LiveJournal Instagram

Стабилизация рабочей точки биполярных транзисторов




Как известно, все параметры биполярного транзистора имеют сильную темпера­турную зависимости. Если не предусмотреть специальные схемы ста­билизации, то рабочая точка в зависимости от температуры будет передвигаться, что может привести к выходу ее за пределы рабочей области характеристики. Так, например, обратный ток коллектора в сильной степени зависит от окружающей температуры:,

где А - коэффициент, зависящий от технологии производства транзистора.

При увеличении температуры на 10°С увеличивается в два раза. Такое явление вызывает изменение коллекторного тока и режима работы. Изменение также может быть вызвано изменением коэффициента усиления и изменением питающих напряжений во времени. Широкое применение находят коллекторная и эмиттерная схемы стабилизации режимов работы транзисторов. Надо отметить, что все схемы стабилизации реализованы с использованием отрица­тельной обратной связи по постоянному току. В схеме коллекторной стабилизации (рис.4.3., а) ток смещения зависит от потенциала коллектора Uк0, который определяется Uк0=Е-IкRн. Если увеличится , то уменьшается ток смешения Iб0=(Е-IкRн)/R1, что приводит к снижению . Процесс автома­тического управления при уменьшении тока коллектора происходит обратным образом. Принцип действия коллекторной стабилизации ос­нован на применении отрицательной обратной связи по напряжению.

Коллекторная стабилизация в случае подачи смещения с помощью делителя объясняется следующим образом: Iд= (Е-IкRн)/(R1 + R2); Uсм= Iд R2

Рис.4.3. Схемы коллекторной стабилизации рабочей точки.

При повышении температуры увеличивается ток коллектора, следовательно, возрастает падение напряжения на сопротивлении нагрузки, вследствие чего уменьшается потенциал коллектора. Это приводит к уменьшению напряжения смещения, следовательно, к уменьшению тока коллектора.

Более высокую стабильность рабочей точки обеспечивает наибо­лее распространенная схема эмиттерной стабилизации (рис. 4.4.).

Напряжение смещения в этой схеме равняется . Принцип действия эмиттерной стабилизации состоит в следующем. До­пустим, за счет повышения температуры в схеме возрастают токи и . При этом растет падение напряжения на , что уменьшает напряжение смещения. Снижение напряжения смещения, в свою оче­редь, ведет к уменьшению токов и . Чтобы исключить обратную связь по переменной составляющей, необходимо зашунтировать большой емкостью .

Рис.4.4. Схема эмиттерной стабилизации рабочей точки

Стабильность рабочей точки повышается при использовании схемы комбини­рованной стабилизации (рис.4.5), в которой объединены оба рас­смотренных способа. Коллекторная стабилизация рабочей точки в этой схеме обеспечивается за счет включения в цепь коллектора элементов развязывающего фильтра. При увеличении температуры увеличивается Iк и падение напряжения IкRф. Вследствие чего уменьшается потенциал точки 1, что приводит к уменьшению напряжения смещения. Следовательно, уменьшается ток коллектора, т.е. происходит стабилизация режима работы транзистора.




Рис.4.5. Схема комбинированной стабилизации рабочей точки.

Когда требуется уменьшить нестабильность тока покоя, вызы­ваемую лишь изменением температуры, используются схемы темпера­турной стабилизации (рис.4.6).

Рис.4.6. Схемы температурной стабилизации:

а – с помощью терморезистора; б – с помощью диода.

В принципиальной схеме усилителя с температурной стабилиза­цией, приведенной на рис. 4.6.а, в нижнем плече делителя устанавливается терморезистор с отрицательным температурным коэффициен­том. При повышении температуры его сопротивление падает, следо­вательно, уменьшается напряжение смещения, что вызывает уменьше­ние токов коллектора и эмиттера.

Температурная стабилизация может быть осуществлена с по­мощью полупроводниковых диодов (рис.4.6.б). С повышением темпера­туры возрастает обратный ток диода, следовательно, возрастает напряжение на сопротивлении и уменьшается напряжение смещения, компенсируя возрастания обратного тока транзистора.





Дата добавления: 2014-02-12; просмотров: 3223; Опубликованный материал нарушает авторские права? | Защита персональных данных


Не нашли то, что искали? Воспользуйтесь поиском:

Лучшие изречения: Студент - человек, постоянно откладывающий неизбежность... 11306 - | 7589 - или читать все...

Читайте также:

 

18.232.188.251 © studopedia.ru Не является автором материалов, которые размещены. Но предоставляет возможность бесплатного использования. Есть нарушение авторского права? Напишите нам | Обратная связь.


Генерация страницы за: 0.002 сек.