Определение. Векторным произведением векторов
и
называется вектор
, удовлетворяющий следующим условиям:
1)
, где j - угол между векторами
и
,

2) вектор
ортогонален векторам
и 
3)
,
и
образуют правую тройку векторов.
Обозначается:
или
.
![]() |


j

Свойства векторного произведения векторов:
1)
;
2)
, если
ïï
или
= 0 или
= 0;
3) (m
)´
=
´(m
) = m(
´
);
4)
´(
+
) =
´
+
´
;
5) Если заданы векторы
(xa, ya, za) и
(xb, yb, zb) в декартовой прямоугольной системе координат с единичными векторами
, то
´
=
6) Геометрическим смыслом векторного произведения векторов является площадь параллелограмма, построенного на векторах
и
.
Пример. Найти векторное произведение векторов
и
.
= (2, 5, 1);
= (1, 2, -3)
.
Пример. Вычислить площадь треугольника с вершинами А(2, 2, 2), В(4, 0, 3),С(0, 1, 0).


(ед2).
Пример. Доказать, что векторы
,
и
компланарны.
, т.к. векторы линейно зависимы, то они компланарны.
Пример. Найти площадь параллелограмма, построенного на векторах
, если 

(ед2).







