Бета – распад

Стабильные атомные ядра изобаров имеют минимальную величину энергии, которая определяется его массой (см. рис. 2.2.1). Масса ядра с данным общим числом нуклонов определяется, в свою очередь, его протонно-нейтронным составом, поскольку массы протона и нейтрона не равны между собой. В этой связи, среди ядер изобаров должны существовать ядра с определенное соотношением между числом протонов и нейтронов (дорожка стабильности на рис. 1.1.2), которому отвечают ядра с наименьшей массой, а, следовательно, и полной энергией. Ядру изобара с любой другой конфигурацией нуклонного состава энергетически выгодно превращение в ядро с оптимальным соотношением между числом протонов и нейтронов. Выход на дорожку стабильности в принципе возможен, если ядро испускает избыточный протон или нейтрон. Но для отделения избыточного нуклона требуется энергия не меньше энергии связи нуклона в ядре, т.е. энергия материнского ядра должна быть больше энергии дочернего ядра и свободного нуклона на величину энергии связи нуклона в материнском ядре. Если же эта энергия меньше энергии связи избыточного нейтрона в ядре, то могут иметь место самопроизвольные изменения в составе ядер, обусловленные явлением b-распада – взаимопревращением внутри ядра нуклонов одного рода в другой (протона в нейтрон или наоборот). Направление процесса для ядра изобара определяется лишь тем, при каком соотношении между числом протонов и нейтронов ядро имеет наибольшую энергию связи, которой соответствует наименьшая масса ядра (см. рис. 2.2.1).

Бета-распад (b-распад) является спонтанным процессом преобразования ядра, в результате которого ядро изменяет свой заряд на ΔΖ = ±1, сохраняя при этом неименное число нуклонов А (массовое число). В некоторых случаях образуются свободные b -частицы (электрон β-или позитрон β +) или происходит «захват» ядром электрона из электронной оболочки собственного атома. Свойства электрона и позитрона тождественны, за исключением знака электрического заряда. Потоки образующихся b - частиц образуют b -излучение.

β-Распад – самый распространенный вид радиоактивных превращений ядер в природе. В отличие от α-распада, который наблюдается исключительно у тяжелых ядер, β-распаду подвержены ядра практически во всей области значений массового числа А, начиная от единицы (свободный нейтрон) и заканчивая массовыми числами самых тяжелых ядер.

Энергия, выделяющаяся при β-распаде, опять же, в отличие от α-распада, лежит в довольно широком интервале значений от 0,02 МэВ прираспаде ядра трития 3Н до 16,4 МэВ при распаде ядра 12N.

Периоды полураспада β-активных ядер изменяются в очень широких пределах от 10-2 с до 1018 лет.

Известны три разновидности b-распада.

1. Электронный (β-- распад):

, (3.5.1)

при котором выбрасываются электрон β- и антинейтрино , а дочернее ядро получает заряд на единицу больший, чем материнское, так как в ядре уменьшается число нейтронов на единицу за счет увеличения на единицу числа протонов. Например:

2. Позитронный (b+ - распад):

(3.5.2)

при котором выбрасываются позитрон β+ и нейтрино ν, а дочернее ядро получает заряд на единицу меньший, чем материнское, так как в ядре увеличивается на единицу число нейтронов из-за уменьшения на единицу числа протонов. Например:

3. E -захват (или К -захват - по обозначению электронной оболочки, с которой чаще всего захватывается электрон):

(3.5.3)

где е- - атомный электрон. В результате Е -захвата один из электронов, как правило, один из двух самой глубокой К -оболочки атома, захватывается ядром. При этом выбрасывается нейтрино ν, а дочернее ядро получает заряд на единицу меньше, чем материнское. Например:

Е -захват и b+ - распад часто конкурируют между собой, так как в этих случаях материнские ядра претерпевают одинаковые изменения.

Таким образом, при b - распаде любого вида число нуклонов в ядре сохраняется, но происходит самопроизвольное превращение либо нейтрона в протон-- распад), либо протона в нейтрон (b + -распад и Е -захват). Именно поэтому Е -захват относится к процессам b-распада.

Так как при b - распаде изменяется только один из нуклонов ядра, то этот процесс – внутринуклонный, а не внутриядерный. Подтверждением этому служит b - распад свободного нейтрона, протекающего по следующей схеме:

. (3.5.4)

Современное значение периода полураспада нейтрона составляет 10,25 мин. (1988 г.).

Превращение (b+-распад) свободного протона в нейтрон запрещено законом сохранения энергии, так как его масса на 1,3 МэВ меньше массы нейтрона. Но в составе ядра он может преобразовываться в нейтрон за счет внутренней энергии ядра, что приводит к явлению b + -распада или Е -захвата.

Остановимся на интересном вопросе возникновения свободных β-частиц в процессе β-распада ядер. Не вызывает сомнений, что источником β-частиц является ядро, но большое количество экспериментальных данных свидетельствует о том, что в ядре нет β-частиц. Еще до открытия нейтрона (1932 г.) и создания протонно-нейтронной модели ядра (Иваненко, Гейзенберг, 1932 г.) была предложена модель атомного ядра, имеющего в своем составе протоны и электроны. Например, ядро представлялось как 14 протонов и 7 электронов. К тому времени было известно, что протон и электрон имеют полуцелый спин, равный 1/2 и согласно этой модели спин ядрадолжен быть полуцелым. Однако экспериментально измеренный спин ядра равнялся единице. Это противоречие получило название «азотная катастрофа». Отсюда следует несправедливость протонно-электронной модели ядра. Об этом же свидетельствует и порядок величины магнитных моментов ядер, которые не превышают нескольких ядерных магнетонов Бора (см. §1.6 п.2). Если бы электроны входили в состав ядра, естественно было бы ожидать, что магнитные моменты ядер по порядку величины должны быть близки атомному магнетону Бора, величина которого ~ в 2000 раз больше ядерного. Наконец, о невозможности существования в ядре связанных электронов свидетельствует квантовомеханическое соотношение между неопределенностями Δ p и Δ r одновременного измерения импульса и координаты электрона в ядре:

(3.5.5)

Если принять, Δ r = r я ≤ 2∙10-13 см, то для импульса электрона в ядре получим минимальную величину

, (3.5.6)

которой соответствует энергии электрона > 20 МэВ. Такая величина энергии существенно превышает как высоту кулоновского барьера для электронов в самых тяжелых ядрах (В к ≈ 15 МэВ), так и энергию электронов β-распада. Таким образом, по современным представлениям электронов в ядрах нет и они рождаются непосредственно при b-распаде ядра, о чем свидетельствует также рождение особых частиц: нейтрино (ν) и антинейтрино, которые имеют обобщающее название нейтрино.

Обнаружить на опыте β- и b+ -распады очень просто, регистрируя обычными методами β-частицы с большой энергией. Зарегистрировать нейтрино, возникающее при Е -захвате, обычными лабораторными методами невозможно. Однако Е -захват сопровождается характеристическим рентгеновским излучением, возникающим вследствие того, что образовавшаяся энергетическая вакансия после захвата электрона ядром, заполняется электронами с вышележащих электронных оболочек атома. Длина волны характеристического рентгеновского излучения определяется величиной Z ядра (закон Мозли), что позволяет идентифицировать заряд материнского ядра. Кроме этого, энергия перехода может быть непосредственно передана одному из электронов внешней оболочки, в результате чего возникает излучение моноэнергетических электронов (т.н. электроны Оже). Именно по таким сопутствующим явлениям был открыт Е -захват (Л. Альварес, 1937 г.).

При β-распаде выделяется энергия, равная разности массы первоначальной системы и массы конечной, выраженных в энергетических единицах:

= M (A,Z) - M (A,Z+1) - mβ > 0, = M (A,Z) - M (A,Z-1) - mβ > 0, QЕ = M (A,Z) + me - M (A,Z-1) - εе > 0, (3.5.8)

где me и εе – масса и энергия связи атомного электрона, который захватывается ядром. В правых частях (3.5.8) опущены массы покоя нейтрино и антинейтрино, так как по современным представлениям их массы покоя mν не превышает 18 эВ (mν << me).

Если к правой части равенств (3.5.8) прибавить и вычесть Zme, то с точностью до энергии связи электронов в атоме энергию соответствующей разновидности β-распада можно выразить через массы атомов:

= Mат (A,Z) - Mат (A,Z+1) > 0; = Mат (A,Z) - Mат (A,Z-1) - 2me > 0; QЕ =Mат (A,Z ) - Mат (A,Z-1) - εе > 0. (3.5.9)

Положительная величина энергии распада является необходимым энергетическим условием возможности β-распада. Поэтому (3.5.8) и (3.5.9) выражают энергетические условия соответствующих разновидностей β-распада. Использовать для этих целей понятие энергии связи β-частцы в ядре неправомерно, поскольку в ядре нет β-частиц.

Выше было указано, что b+ - распад и Е -захват конкурируют между собой. Из (3.5.9) очевидно, что если выполняется условие для β+‑распада, то и подавно выполнится последнее, а Е -захват может происходить даже тогда, когда β+‑распад энергетически невозможен. Все нечетно-нечетные ядра, за исключением четырех легких ядер 2H, 6Li, 10B и 14N, указанных выше, нестабильны к β-распаду и очень часто испытывают все три вида b - распада, хотя и с различной вероятностью. Объясняется это эффектом спаривания одноименных нуклонов, в результате которого нечетно-нечетное ядро «стремится» стать четно-четным всеми возможными способами (рис. 2.2.1,б). Например, ядра в 37 % испытывает β-‑распад, в 45 % - Е‑захват и в 18 % - b +- распад. Эти данные следует понимать как средние величины, которые получены при наблюдении за большим количеством одинаковых радиоактивных ядер, тогда как каждое конкретное ядро может испытать либо β-‑распад, либо Е ‑захват, либо b +- распад.

Оценим максимальную долю энергии, которую может получить невозбужденное дочернее ядро, когда энергия нейтрино равна нулю. В этом случае кинетическая энергия β-частицы (T β)max и дочернего ядра Т я имеют максимально возможные значения. Пусть материнское ядро покоиться. Тогда из закона сохранения импульса следует, что

Р я = Р β.

Учитывая, что

; ,

из трех последних равенств получим, что

.

Поэтому во многих случаях с хорошей точностью можно положить = Q β.

Энергии β-частиц измеряется по величине их отклонения при движении в постоянном магнитном поле с помощью специальных приборов, называемых магнитными β- спектрометрами. Последний представляет магнитный анализатор импульсов β-частиц и подобен масс-спектрометру. Измерения показали, что в процессе β-распада одинаковых ядер испускаются β-частицы всех энергий от нуля и до энергии (T β)max, называемой верхней границей β- спектра, и приблизительно равной Q β из (3.5.9). Таким образом, в отличие от линейчатых спектров α-частиц (см. рис. 3.4.1), энергетический спектр β-частиц является сплошным. На рис. 3.5.1. представлен энергетический спектр β--частиц, испускаемых при распаде свободного нейтрона (3.5.4), форма которого является весьма типичной. Энергетические спектры легких ядер более симметричны и для них средняя энергия испускаемых β-частиц примерно равна (1/2)·(T β)max. У тяжелых ядер средняя энергия β-частиц обычно близка к 1/3 максимальной и для большинства естественных источников β-излучения заключена в пределах 0,25 ÷ 0,45 МэВ.

Интерпретация перечисленных особенностей энергетических спектров β-частиц в свое время вызывала большие затруднения. Действительно, если не делать никаких предположений, то согласно (3.5.9) испускаемые β-частицы должны иметь, как и α-частицы, строго определенную и равную (T β)max энергию, определяемую энергетическим выходом распада. Но в спектре имеются b - частицы с любой меньшей энергией и неизбежно возникает вопрос - куда исчезает остальная энергия в каждом случае b-распада, когда Т β < (T β)max? Эти соображения послужили основанием для гипотезы (Паули, 1931 г.) о возникновении в β-распадных процессах электрически нейтральной частицы с массой покоя, близкой к нулю, и со спином, равным 1/2. Эта частица, впоследствии названная нейтрино, и должна уносить недостающую часть энергии распада. Помимо закона сохранения энергии, существует еще один важный аргумент, с необходимостью приводящий к гипотезе нейтрино – закон сохранения спина. Рассмотрим распад (3.5.4) свободного нейтрона. Нейтрон, имеющий спин 1/2, распадаясь только на протон (спин 1/2) и электрон (спин 1/2) давал бы суммарный спин продуктов, равный 0 или 1, что противоречит закону сохранения импульса, для выполнения которого нужно предположить рождение еще одной частицы с полуцелым спином. Учет орбитальных моментов протонов и нейтронов при β-распаде сложных ядер ничего не меняет, так как они всегда целые числа.

Таким образом, при β-распаде, в отличие от α-распада, из ядра вылетают не одна, а две частицы. В силу статистического характера явления радиоактивности в каждом акте β-распада распределение энергии распада между β-частицей и нейтрино может быть любым, т.е. кинетическая энергия электрона может иметь любое значение от нуля и до (T β)max. Для очень большого числа распадов получается уже не случайное, а вполне закономерное распределение β-частиц по энергиям, называемое β- спектром.

Нейтрино практически не взаимодействуют с веществом и его длина свободного пробега (расстояние до первого взаимодействия) в твердом веществе равна примерно 1016 км, что делает чрезвычайно сложным их регистрацию. Поэтому измерять энергию нейтрино и наблюдать их распределение по энергии практически невозможно и фактически единственно доступным для регистрации остается только β-спектр. Долгое время сведения, подтверждающие существование нейтрино, носили косвенный характер и были впервые получены в 1942 г (Аллен) путем измерения энергии отдачи дочерних ядер при Е -захвате. Прямое наблюдение нейтрино удалось осуществить только в 1953 - 1956 г.г. (Рейнес и Коуэн) после создания мощных ядерных реакторов, работа которых сопровождается выделением больших потоков нейтрино.

Образование дочернего ядра в результате β-распада в основном энергетическом состоянии является скорее исключением, чем правилом. Обычно β-распад довольно свободно идет как на основной, так и на сравнительно сильно (по сравнению с α-распадом) возбужденные уровни и может наблюдаться несколько возбужденных уровней дочернего ядра. Возбужденные дочерние ядра переходят а основные состояние, испуская, как правило, γ-кванты. Поэтому β-распад сопровождается почти всегда γ-излучением, которое представляет основную опасность при обращении с β-радиоактивными веществами.

Возбуждение дочернего ядра до энергии происходит за счет энергии распада Q β и в этом случае максимальная энергия β-спектра

. (3.5.10)

Если при β-распаде возможно образование дочернего ядра в нескольких возбужденных состояниях, то наблюдаемый β-спектр представляет собой наложение нескольких парциальных β-спектров со своими граничными энергиями и может иметь сложную форму. Каждая составляющая спектра характеризуется своим выходом, т.е. долей распадов, приводящих к ее образованию. Поэтому β-спектры подразделяются на простые и сложные. Простым β-спектрам соответствует образование дочернего ядра только в одном энергетическом состоянии, а сложным - в двух и более энергетических состояниях.

Так же как и a - распад (рис. 3.4.1), b-распад удобно представлять с помощью диаграммы. На рис. 3.5.2 приведена диаграмма β+ - распада ядра 14О, в результате которого дочернее ядро 14N рождается в возбужденном состоянии. При переходе в основное состояние дочернее ядро испускает g-квант с энергией 2,31 МэВ.

Вероятность b - распада определяется т.н. правилами отбора по четности и спину. Они заключаются в следующем.

1) Если четности материнского Р м и дочернего Р д ядер совпадают, т.е., если Р м· Р д = +1, то такие b-переходы имеют наибольшую вероятность (разрешены на языке квантовой механики).

2) Полный момент импульса, уносимый обеими частицами при b - распаде, равен

L = s β + s ν + l β + l ν, (3.5.11)

где s и l – спин и орбитальный момент соответствующих частиц. Испускание b-частицы и нейтрино с l > 0 крайне маловероятно (запрещено на языке квантовой механики), и разрешенными являются переходы с l = 0.

Таким образом, разрешенными являются b-переходы, для которых Р м· Р д = +1 и l = 0. Для разрешенных переходов изменение спина ядра будет определяться только ориентацией спинов, вылетающих частиц. При этом согласно (3.5.11) имеются две возможности.

а) β-Частица и нейтрино испускаются с противоположно направленными спинами, так что полный момент, уносимый обеими частицами, равен нулю (ориентация спина нуклона, испытывающего β-распад, сохраняется) и спин ядра не изменяется, т.е. Δ I = 0. Такие переходы называются фермиевскими, а соответствующиеправила отбора

Р м· Р д = +1; l = 0; Δ I = 0 (3.5. 12)

- называются правилами отбора Ферми.

б) β-Частица и нейтрино испускаются с одинаково направленными спинами, так что полный момент, уносимый обеими частицами равен единице (ориентация спина нуклона изменяется на обратную). Возможные изменения спина ядра составят Δ I = 0, ±1. Если исключить 0 – 0 переходы, в которых спин ядра равен нулю, как в начальном, так и в конечном состоянии, то получим правила отбора Гамова-Теллера

Р м· Р д = +1; l = 0; Δ I = 0, ±1. (3.5.13)

Еще раз отметим, что для 0 - 0 переходов гамов-теллеровские переходы строго запрещены, т.е. не могут быть выполнены ни при каких условиях.

Поэтому вероятность непосредственно b - распада и образования дочернего ядра в том или ином энергетическом состоянии очень сильно зависитот четности и разностиспинов исходного и конечного состояний ядер. Это положение отчетливо видно на диаграмме (рис. 3.5.2) распада ядра 14О, где вероятность оказаться дочернему ядру в основном состоянии с характеристикой 1+ имеет ничтожную вероятность.

Энергия возбуждения дочерних ядер при β-распадах определяется системой энергетических уровней дочерних ядер и лежит обычно в интервале 0,1 ÷ 3 МэВ. В этих случаях переход возбужденного дочернего ядра в основные состояния происходит обычным порядком. Однако в редких случаях энергия возбуждения дочерних ядер может достигать 8 ÷ 11 МэВ, превышая энергию связи (отделения) нуклона:

; (3.5.14)

и возбужденное дочернее ядро освобождается от избыточной энергии, практически мгновенно, испуская нуклон, – протон или нейтрон, в зависимости от того, для какого из нуклонов выполняется условие (3.5.14). Эти нуклоны получили название з апаздывающих, поскольку их появление задерживается возникновением сильно возбужденных состояний дочернего ядра, возникающих только после β-распада материнского ядра-предшественника.

Рассмотрим подробнее процесс испускания осколками деления (см. §5.2) запаздывающих нейтронов, которые используются для управления цепной реакцией деления (см. §5.3). Время появления запаздывающих нейтронов деления, в отличие от мгновенных (см. §5.2), определяется периодами полураспада ядер предшественников. На рис. 3.5.3 изображена схема образования запаздывающих нейтронов при β-распадах ядер 87Br, образующихся при делении 235U. Примерно в двух случаях из ста β--распадов ядер 87Br дочерние ядра 87Кr возникает в сильно возбужденном состоянии с энергией возбуждения = 5,8 МэВ. Энергия отделения последнего нейтрона в ядре 87Кrсоставляет S n = 5,53 МэВ, которая меньше энергии возбуждения и потому испускается нейтрон с кинетической энергией 0,27 МэВ и образуется стабильное ядро 86Кr. Можно указать две причины такой малой величины энергии связи последнего нейтрона: ядра осколков деления пересыщены нейтронами (лежат ниже дорожки стабильности, см. рис. 1.1.2); и, кроме этого, ядро 87Кr имеет один лишний нейтрон относительно магическом ядре , имеющего замкнутую оболочку из 50 нейтронов. Такие же причины вызывают появление запаздывающих нейтронов при β--распаде тяжелых осколков деления, например ядра 137I, которое может превращаться в сильно возбужденное ядро 137Хе*. Испустив нейтрон, ядро 137Хе* превращается в стабильное ядро с магическим числом нейтронов, равным 82.

 
 

Таким образом, можно указать два обстоятельства, благоприятствующие выполнению условия (3.5.14) и, следовательно, появлению запаздывающих нейтронов при β--распаде: - запрет образования дочернего ядра в основном энергетическом состоянии и малая величина энергии S n отделения нейтрона.

Если ядра сильно перегружены нейтронами и находятся ниже дорожки стабильности (рис. 1.1.2), то возможно образование последовательных цепочек β--распадов. Подобная ситуация наблюдается в ядерном реакторе, когда продукты (осколки) деления с разной вероятностью образует большое число (сотни) различных цепочек ‑ распадов. На рис. 3.5.4 показаны двеизчисла наиболее вероятных цепочек, на которых отмечено испускание запаздывающих нейтронов ядрами 139Хе и 94Sr, физическая причина появления которых рассмотрена выше.

В цепочке β--распадов 95Kr наблюдается еще одно распространенное явление, называемое ядерной изомерией. Ядро 95Zr при распаде образует изомерную пару: возникновение с разной вероятностью ядер 95mNb в метастабильном состоянии и ядер 95Nb в основном энергетическом состояние. Подробнее явление ядерной изомерии рассмотрено в §3.6.

Теория b-распада была создана Ферми в 1934 г. по аналогии с квантовой электродинамикой, в которой испускание и поглощение фотонов рассматривается как результат взаимодействия заряда с создаваемым им самим электромагнитным полем (см. §1.9 п.5). При этом фотоны не содержатся в готовом виде в зарядах, а рождаются непосредственно в момент испускания.

В теории Ферми процесс b-распада рассматривается как результат взаимодействия нуклона с новым видом поля (электроно-нейтринным полем), в результате которого нуклон, находясь в одном из двух возможных нуклонных состояниях – протонном или нейтронном - испускает b-частицу и нейтрино и переходит в другое нуклонное состояние. Нуклоны являются источниками b-частиц и нейтрино, которые рождаются непосредственно в момент преобразования нуклонов в электроно-нейтринном поле. Такого рода поля в настоящее время называются электрослабыми.

Все известные науке взаимодействия связаны всего с четырьмя типами полей: сильными (ядерными), электромагнитными, электрослабыми и гравитационными. Например, все химические реакции относятся к классу электромагнитных взаимодействий, так как осуществляются электрическими силами электронных оболочек атомов. В частности, любые проявления жизни на Земле также имеют электромагнитный характер.

Сильное (ядерное) взаимодействие удерживает нуклоны в ядре и проявляется в различных ядерных реакциях.

Слабое взаимодействие ответственно за b-распад и распады мезонов. Гравитационное поле проявляется в макроскопических и космических масштабах. Если расположить все эти взаимодействия по их относительной интенсивности, то получим следующую картину:

сильное 1;

электромагнитное ~ 10-2;

слабое ~ 10-14;

гравитационное ~ 10-40.

Не следует думать, что этими цифрами определяется роль соответствующих взаимодействий (полей) в природе. Они равно фундаментальны, то есть без любогоиз них невозможно существование Вселенной.

Теория Ферми позволила рассчитать b-спектры и влияние на форму b-спектров кулоновского поля ядра и электронной оболочки атома. При малой энергии вылетающей заряженной частицы форма любого β-спектра искажается кулоновским взаимодействием между ядром и вылетающей из него β-частицей ядра (рис. 3.5.5). Кулоновское поле ядра оказывает на b- - частицы тормозящее действие. В результате спектр в «мягкой» (низкоэнергетической) области энергий оказывается обогащенными частицами. β--Спектры с граничной энергией меньше 1 МэВ у средних и тяжелых ядер вообще не имеют максимума, а монотонно спадают. В спектрах b+ - распада мягкая область спектра, наоборот, оказывается обедненной. Поле электронной оболочки атома оказывает на спектр незначительное влияние.

При изучении b - распадных явлений было сделано одно из фундаментальных открытий ядерной физики - несохранение четности в слабых взаимодействиях. Гипотезу о несохранение четности в слабых взаимодействиях выдвинули в 1956 г. Ли и Янг, которые показали, что в отличие от теории Ферми, опирающуюся на закон сохранения четности, можно построить теорию b - распада без учета этого закона, которая не противоречила всем известным к тому времени экспериментальным фактам. Они же предложили эксперимент по обнаружению несохранения четности при b - распаде, который был поставлен в 1957 г. Ву. Принципиальные черты этого эксперимента следующие (рис. 3.5.7). b‑Активный образец 60Со, ядра которого имеют большой спин и магнитный момент (I = 5, m = 3,78 mБ), помещался в магнитное поле кругового тока и охлаждался до очень низких (~ 10‑2 К) температур. Это было необходимо для ориентирования магнитных моментов и, следовательно, спинов ядер 60Со в определенном направлении (поляризации) и уменьшения влияния тепловых колебаний ядер. У поляризованного таким образом образца 60Со регистрировались b - частицы, летящие под углом и p-по отношению к направлению поляризующего магнитного поля, то есть по отношению к направлению спина ядра. При выполнении закона сохранения четности для квадрата модуля волновой функции выполняется условие

(3.5.15)

или в сферических координатах

, (3.5.16)

т.е. инверсия системы координат не может изменить вероятность обнаружения частицы. От азимутального угла jв опыте ничего не зависит. Следовательно, если четность сохраняется, то вероятность зарегистрировать b-частицу под углом («вперед») и p - («назад») одинакова. Опыт же показал существенное различие счета частиц под этими углами. «Вперед» (в направлении векторанапряженности магнитного поля) двигалось существенно (~ на 40 %) меньше b-частиц, чем «назад». Таким образом, закон сохранения четности, который казался столь же фундаментальным и нерушимым, как и остальные законы сохранения, в случае слабых взаимодействий оказался нарушенным. Это привело к пересмотру и уточнению теория слабых взаимодействий.


Понравилась статья? Добавь ее в закладку (CTRL+D) и не забудь поделиться с друзьями:  



double arrow
Сейчас читают про: