Объединение двух множеств А и В – это новое множество, элементами которого являются элементы, принадлежащие множеству А или множеству В. Обозначение: А
В.
А
В={x| х
А или х
В}.
Пересечение двух множеств А и В – это новое множество, элементами которого являются элементы, принадлежащие множеству А и множеству В. Обозначение: А
В.
А
В={x| х
А и х
В}.
Разность двух множеств А и В – это новое множество, элементами которого являются элементы, принадлежащие множеству А и не принадлежащие множеству В. Обозначение: А \ В.
А \ В={x| х
А и х
В}.
Обычно элементы множеств выбираются из некоторого достаточно широкого множества U, которое называется универсум. В связи с этим понятием можно ввести операцию дополнение.
Дополнением множества А называется множества, которое состоит из элементов универсума, не принадлежащих множеству А. Обозначение:
.
=U \ A или
={x| х
А и х
U}.
Пример: U={1, 2, 3, 4, 5, 6, 7}, A={1, 2, 3, 4, 5}, В={2, 4, 6}.
А
В = {1, 2, 3, 4, 5, 6} А
В = {2, 4} А \ В = {1, 3, 5}
В \ А = {6}
= {6, 7}
= {1, 3, 5, 7}
Для наглядного изображения соотношений между множествами и изображения результатов операций над множествами используют диаграммы Эйлера.

Пример:


B
A А
В А
В А \ В






