Моменты инерции тела

Моменты инерции тела относительно координатных плоскостей вычисляются по формулам
и моменты инерции тела относительно координатных осей

При необходимости интегрирования функций нескольких переменных по неограниченной области D поступают так. Выбирают последовательность ограниченных областей интегрирования D 1, D 2, D 3,..., монотонно исчерпывающих область D, т.е. D 1 Ì D 2Ì D 3Ì... и Dn ® D при n ® ¥. Например, если область интегрирования D совпадает со всей плоскостью Ох у, то за последователь { Dn } можно принять совокупность концентрических кругов x 2 + y 2 £ an 2, an < an +1, n = 1, 2,..., где an ® ¥ при n ® ¥.
Если предел последовательности интегралов существует и конечен, то несобственный интеграл по неограниченной области называется сходящимся, в противном случае - расходящимся.
Пример 1. Вычислить интеграл
, где область интегрирования D – вся плоскость.
В качестве областей интегрирования { Dn } выбираем круги х 2 + у 2 ≤ n 2 радиуса n (n = 1, 2, …).
Переходя к полярным координатам, получим
=
= 
= 2 π 
=
= 2 π 
= π. Интеграл сходится и равен π.
Для интеграла по неограниченной области D справедлив следующий
Признак сравнения. Если 0 ≤ f (x, y) ≤ g (x, y)
(x, y)
D, и интеграл 
сходится, то сходится и интеграл
.
Если же интеграл
расходится, то расходится и интеграл
.
Интегралы, сходящиеся на всей плоскости, можно вычислять с помощью повторного интегрирования:
=
=
.
Несобственные интегралы от функции трех, четырех и более числа переменных по неограниченным областям определяются аналогично.






