Понятие о несобственном кратном интеграле по неограниченной области

Моменты инерции тела


Моменты инерции тела относительно координатных плоскостей вычисляются по формулам

и моменты инерции тела относительно координатных осей



При необходимости интегрирования функций нескольких переменных по неограниченной области D поступают так. Выбирают последовательность ограниченных областей интегрирования D 1, D 2, D 3,..., монотонно исчерпывающих область D, т.е. D 1 Ì D 2Ì D 3Ì... и Dn ® D при n ® ¥. Например, если область интегрирования D совпадает со всей плоскостью Ох у, то за последователь { Dn } можно принять совокупность концентрических кругов x 2 + y 2 £ an 2, an < an +1, n = 1, 2,..., где an ® ¥ при n ® ¥.

Если предел последовательности интегралов существует и конечен, то несобственный интеграл по неограниченной области называется сходящимся, в противном случае - расходящимся.

Пример 1. Вычислить интеграл , где область интегрирования D – вся плоскость.

В качестве областей интегрирования { Dn } выбираем круги х 2 + у 2n 2 радиуса n (n = 1, 2, …).

Переходя к полярным координатам, получим

= = = 2 π =

= 2 π = π. Интеграл сходится и равен π.

Для интеграла по неограниченной области D справедлив следующий

Признак сравнения. Если 0 ≤ f (x, y) ≤ g (x, y) (x, y) D, и интеграл

сходится, то сходится и интеграл .

Если же интеграл расходится, то расходится и интеграл .

Интегралы, сходящиеся на всей плоскости, можно вычислять с помощью повторного интегрирования:

= = .

Несобственные интегралы от функции трех, четырех и более числа переменных по неограниченным областям определяются аналогично.


Понравилась статья? Добавь ее в закладку (CTRL+D) и не забудь поделиться с друзьями:  



double arrow
Сейчас читают про: