Кроме входных и выходных переменных, можно выделить некоторую совокупность промежуточных переменных, которые связаны с внутренней структурой автомата. В комбинационных схемах промежуточные переменные непосредственно не участвуют в соотношениях «вход-выход». Напротив, выходные функции последовательностных схем в качестве своих аргументов, кроме входных переменных, обязательно содержат некоторую совокупность промежуточных переменных , характеризующих состояние схемы. Набор всех возможных состояний, которые присущи данной схеме, называется множеством состояний. Если
- конечные алфавиты переменных состояния
, то множество состояний
, также является конечным множеством.
Строгое определение понятия состояния связывается с той ролью, которое оно играет при описании конечных автоматов. Во-первых, значения совокупности выходных переменных на v-м такте однозначно определяется значениями входных переменных
и состоянием
на том же такте, т.е.
. Во-вторых, состояние s(v+1) в следующем (v + 1)-м такте однозначно определяется входными переменными x(v) и состоянием s(v) в предыдущем такте, т. е.
.
Таким образом, состояние конечного автомата в любой тактовый момент характеризуется значениями такой совокупности переменных, которая вместе с заданными значениями входных переменных позволяет определить выходные переменные и данный тактовый момент и состояние в следующий тактовый момент.
Ясно, что последовательностные схемы должны обладать способностью сохранять предыдущее состояние до следующего такта, в связи с чем их называют также автоматами с памятью или последовательностными машинами.