Применение. Сканирующий туннельный микроскоп

ЛЕКЦИЯ

Сканирующий туннельный микроскоп

Источники

1. Я. С. Уманский, Ю. А. Скаков, А. Н. Иванов, Л. Н. Расторгуев. Кристаллография, рентгенография и электронная микроскопия. М.: Металлургия, 1982, 632 с.

2. Д. Синдо. Т. Оикава. Аналитическая просвечивающая электронная микроскопия. М.: Техносфера, 2006, 256 с. ISBN 5-94836-064-4


Сканирующий туннельный микроскоп (СТМ, англ. STM — scanning tunneling microscope) — вариант сканирующего зондового микроскопа, предназначенный для измерения рельефа проводящих поверхностей с высоким пространственным разрешением.

В СТМ острая металлическая игла подводится к образцу на расстояние нескольких ангстрем. При подаче на иглу относительно образца небольшого потенциала возникает туннельный ток. Величина этого тока экспоненциально зависит от расстояния образец-игла.

В процессе сканирования игла движется вдоль поверхности образца, туннельный ток поддерживается стабильным за счёт действия обратной связи, и показания следящей системы меняются в зависимости от топографии поверхности. Такие изменения фиксируются, и на их основе строится карта высот. Другая методика предполагает движение иглы на фиксированной высоте над поверхностью образца. В этом случае фиксируется изменение величины туннельного тока и на основе данной информации идет построение топографии поверхности.

Сканирующий туннельный микроскоп (СТМ) включает следующие элементы:

· зонд (иглу),

· систему перемещения зонда относительно образца по 2-м (X-Y) или 3-м (X-Y-Z) координатам,

· регистрирующую систему.

Регистрирующая система фиксирует значение функции, зависящей от величины тока между иглой и образцом, либо перемещения иглы по оси Z. Обычно регистрируемое значение обрабатывается системой отрицательной обратной связи, которая управляет положением образца или зонда по одной из координат (Z). В качестве системы обратной связи чаще всего используется ПИД-регулятор.

Ограничения на использование метода накладываются, во-первых, условием проводимости образца (поверхностное сопротивление должно быть не больше 20 МОм/см²), во-вторых, условием «глубина канавки должна быть меньше её ширины», потому что в противном случае может наблюдаться туннелирование с боковых поверхностей.

Дифракция отражённых электронов

Дифракция отражённых электронов (ДОЭ) — микроструктурная кристаллографическая методика, используемая для исследования кристаллографических ориентаций многих материалов, которая может использоваться для исследования текстуры или преимущественных ориентаций моно- или поликристаллического материала. ДОЭ может использоваться для индексирования и определения семи кристаллических систем, также применяется для картирования кристаллических ориентаций, исследования дефектов, определения и разделения фаз, изучение межзёренных границ и морфологии, картирования микродеформаций и т. д.

Основана на дифракции отражённых электронов. Проводится в растровом электронном микроскопе с ДОЭ – приставкой. Последняя состоит из люминесцентного экрана, вводящегося в камеру с образцом РЭМ, CCD-камеры. Вертикальный пучок электронов падает на наклонённый образец (70° — наиболее оптимальный угол наклона к горизонтали). Уменьшение угла наклона понижает интенсивность получаемой дифракционной картины.

Позволяет проводить точечный анализ, картирование кристаллических ориентаций. С его помощью возможно построение трёхмерных карт вещества

Типы ДОЭ экспериментов

Точечный анализ

Картирование кристаллических ориентаций

Получение высококачественных изображений методом картирования

Изображение зерен и межзеренных границ

Анализ текстуры

Разделение фаз


Понравилась статья? Добавь ее в закладку (CTRL+D) и не забудь поделиться с друзьями:  



double arrow
Сейчас читают про: