double arrow

Генераторы импульсных напряжений


Испытания изоляции оборудования стандартными грозовыми импульсами, имеющими длительность фронта 1.2 мкс и длительность до полуспада 50 мкс, проводят с помощью генераторов импульсных напряжений (ГИН). Схемы ГИН достаточно разнообразны, однако испытания изоляции обыкновенно проводят генераторами с емкостными накопителями, обладающими весьма небольшими паразитными индуктивностями элементов.

Стандартный грозовой импульс в емкостном ГИН получают путем разряда высоковольтного конденсатора на резистор, а сравнительно пологий фронт в 1.2 мкс формируют за счет заряжения вспомогательного конденсатора через дополнительный резистор. Таким образом, минимальное количество элементов ГИН без учета зарядного устройства и коммутатора составляет четыре (рис. 8.11); такие схемы применяют при напряжениях менее 100 кВ.

Рисунок 8.11 - Схема одноступенчатого ГИН

Схема рис. 8.11 содержит основной предварительно заряженный конденсатор C1, основной разрядный резистор R1 и элементы формирования фронта C2 и R2. Для формирования стандартного грозового импульса требуется, чтобы постоянная времени разряда основного конденсатора была много больше постоянной времени заряжения конденсатора фронта . Поэтому можно считать, что в начальные моменты времени первоначальное напряжение на конденсаторе C1 резко уменьшается из-за того, что параллельно конденсатору C1 подключается конденсатор C2, так что начальное напряжение процесса разряда оказывается несколько меньше, ; здесь – начальный заряд конденсатора C1. Приближенно можно считать, что заряжение конденсатора C2 происходит от источника постоянного напряжения величиной :




.

В этой формуле единица в скобках соответствует неизменному напряжению источника постоянного напряжения; поскольку в схеме ГИН напряжение достаточно медленно по сравнению с фронтом уменьшается с течением времени из-за разряда конденсатора на резистор R1, то эту единицу следует заменить экспонентой , отображающую простейший процесс разряда конденсатора на резистор:

.

Таким образом, форма импульса ГИН отображается разностью двух экспонент, из которых первая отображает спад импульса за счет разряда основного конденсатора ГИН на разрядный резистор, а вторая – фронт импульса, образуемый заряжением фронтового конденсатора.

Величина , показывающая степень использования начального напряжения ГИН, называется коэффициентом использования ГИН.

Иногда по конструктивным соображениям фронтовой резистор R2 включают перед основным резистором R1 (рис. 8.12). В этом случае напряжение на выходе ГИН уменьшается еще и за счет действия делителя R1R2, так что коэффициент использования оказывается меньше на коэффициент деления этого делителя, .



Рисунок 8.12 - Вариант схемы одноступенчатого ГИН

Данные схемы ГИН иногда называют одноступенчатой. Использование подобной схемы при напряжении более 250-300 кВ становится неприемлемым из-за больших затрат на выпрямитель и больших размеров элементов. Получение импульсов высокого напряжения с использованием сравнительно низковольтных зарядных устройств и конденсаторов возможно при использовании многоступенчатых (каскадных) схем ГИН. В многоступенчатой схеме несколько конденсаторов заряжаются от зарядного устройства параллельно, а при разряде переключаются в последовательное соединение со сложением напряжений на них. Переключение обычно производится с помощью искровых промежутков.

На рис. 8.13 показана схема четырехступенчатого ГИН. ГИН имеет зарядное устройство на трансформаторе T1 и элементах Rзащ и V1, основные конденсаторы C1, шаровые разрядники FV1-FV5, демпфирующие резисторы Rд и элементы формирования фронта R2C2. Расстояния между шарами промежутков FV1-FV4 подобраны так, что их пробивное напряжение немного больше зарядного напряжения. Символами CП обозначены паразитные емкости оборудования, играющие существенную роль в работе генератора.

Рисунок 8.13 - Схема четырехступенчатого ГИН

Конденсаторы ГИН заряжаются от высоковольтного выпрямителя через зарядные резисторы Rзар параллельно до одинакового напряжения U0. На промежуток FV1 подается дополнительный поджигающий импульс напряжения, так что FV1 пробивается. Потенциал точки 3 практически мгновенно становится равным U0, поскольку величина сопротивления резистора Rд мала и мала постоянная времени цепочки RдCП. Потенциал точки 4 по отношению к земле при этом равен сумме потенциала точки 3 и напряжения U0, а потенциал точки 5 остается нулевым, поскольку паразитная емкость CП не успевает зарядиться через сравнительно высокоомный резистор Rзар. Напряжение на промежутке FV2 оказывается равным 2U0 и промежуток FV2 пробивается, что приводит в первый момент времени к появлению напряжения 3U0 на промежутке FV3. Аналогично пробивается и промежуток FV4, так что все четыре конденсатора оказываются соединенными последовательно через искровые промежутки и резисторы Rд. Резистор Rд используется для демпфирования колебаний в контуре C1-FV1-CП, в котором из-за наличия индуктивностей проводов могут возникнуть затухающие колебания с большой амплитудой.



На рис. 8.13 красным цветом показан образующийся при формировании импульса контур разряда конденсаторов. Напряжение 4U0 (или nU0 при n конденсаторах) называется суммарным зарядным напряжением ГИН; другой важной характеристикой ГИН является наибольшее значение запасаемой генератором энергии . При изменении зарядного напряжения требуется перенастройка искровых промежутков.







Сейчас читают про: