double arrow

Генераторы импульсных напряжений

Испытания изоляции оборудования стандартными грозовыми импульсами, имеющими длительность фронта 1.2 мкс и длительность до полуспада 50 мкс, проводят с помощью генераторов импульсных напряжений (ГИН). Схемы ГИН достаточно разнообразны, однако испытания изоляции обыкновенно проводят генераторами с емкостными накопителями, обладающими весьма небольшими паразитными индуктивностями элементов.

Стандартный грозовой импульс в емкостном ГИН получают путем разряда высоковольтного конденсатора на резистор, а сравнительно пологий фронт в 1.2 мкс формируют за счет заряжения вспомогательного конденсатора через дополнительный резистор. Таким образом, минимальное количество элементов ГИН без учета зарядного устройства и коммутатора составляет четыре (рис. 8.11); такие схемы применяют при напряжениях менее 100 кВ.

Рисунок 8.11 - Схема одноступенчатого ГИН

Схема рис. 8.11 содержит основной предварительно заряженный конденсатор C1, основной разрядный резистор R1 и элементы формирования фронта C2 и R2. Для формирования стандартного грозового импульса требуется, чтобы постоянная времени разряда основного конденсатора была много больше постоянной времени заряжения конденсатора фронта . Поэтому можно считать, что в начальные моменты времени первоначальное напряжение на конденсаторе C1 резко уменьшается из-за того, что параллельно конденсатору C1 подключается конденсатор C2, так что начальное напряжение процесса разряда оказывается несколько меньше, ; здесь – начальный заряд конденсатора C1. Приближенно можно считать, что заряжение конденсатора C2 происходит от источника постоянного напряжения величиной :

.

В этой формуле единица в скобках соответствует неизменному напряжению источника постоянного напряжения; поскольку в схеме ГИН напряжение достаточно медленно по сравнению с фронтом уменьшается с течением времени из-за разряда конденсатора на резистор R1, то эту единицу следует заменить экспонентой , отображающую простейший процесс разряда конденсатора на резистор:

.

Таким образом, форма импульса ГИН отображается разностью двух экспонент, из которых первая отображает спад импульса за счет разряда основного конденсатора ГИН на разрядный резистор, а вторая – фронт импульса, образуемый заряжением фронтового конденсатора.

Величина , показывающая степень использования начального напряжения ГИН, называется коэффициентом использования ГИН.

Иногда по конструктивным соображениям фронтовой резистор R2 включают перед основным резистором R1 (рис. 8.12). В этом случае напряжение на выходе ГИН уменьшается еще и за счет действия делителя R1R2, так что коэффициент использования оказывается меньше на коэффициент деления этого делителя, .

Рисунок 8.12 - Вариант схемы одноступенчатого ГИН

Данные схемы ГИН иногда называют одноступенчатой. Использование подобной схемы при напряжении более 250-300 кВ становится неприемлемым из-за больших затрат на выпрямитель и больших размеров элементов. Получение импульсов высокого напряжения с использованием сравнительно низковольтных зарядных устройств и конденсаторов возможно при использовании многоступенчатых (каскадных) схем ГИН. В многоступенчатой схеме несколько конденсаторов заряжаются от зарядного устройства параллельно, а при разряде переключаются в последовательное соединение со сложением напряжений на них. Переключение обычно производится с помощью искровых промежутков.

На рис. 8.13 показана схема четырехступенчатого ГИН. ГИН имеет зарядное устройство на трансформаторе T1 и элементах Rзащ и V1, основные конденсаторы C1, шаровые разрядники FV1-FV5, демпфирующие резисторы Rд и элементы формирования фронта R2C2. Расстояния между шарами промежутков FV1-FV4 подобраны так, что их пробивное напряжение немного больше зарядного напряжения. Символами CП обозначены паразитные емкости оборудования, играющие существенную роль в работе генератора.

Рисунок 8.13 - Схема четырехступенчатого ГИН

Конденсаторы ГИН заряжаются от высоковольтного выпрямителя через зарядные резисторы Rзар параллельно до одинакового напряжения U 0. На промежуток FV1 подается дополнительный поджигающий импульс напряжения, так что FV1 пробивается. Потенциал точки 3 практически мгновенно становится равным U0, поскольку величина сопротивления резистора Rд мала и мала постоянная времени цепочки RдCП. Потенциал точки 4 по отношению к земле при этом равен сумме потенциала точки 3 и напряжения U 0, а потенциал точки 5 остается нулевым, поскольку паразитная емкость CП не успевает зарядиться через сравнительно высокоомный резистор Rзар. Напряжение на промежутке FV2 оказывается равным 2 U 0 и промежуток FV2 пробивается, что приводит в первый момент времени к появлению напряжения 3 U 0 на промежутке FV3. Аналогично пробивается и промежуток FV4, так что все четыре конденсатора оказываются соединенными последовательно через искровые промежутки и резисторы Rд. Резистор Rд используется для демпфирования колебаний в контуре C1-FV1-CП, в котором из-за наличия индуктивностей проводов могут возникнуть затухающие колебания с большой амплитудой.

На рис. 8.13 красным цветом показан образующийся при формировании импульса контур разряда конденсаторов. Напряжение 4 U 0 (или nU 0 при n конденсаторах) называется суммарным зарядным напряжением ГИН; другой важной характеристикой ГИН является наибольшее значение запасаемой генератором энергии . При изменении зарядного напряжения требуется перенастройка искровых промежутков.


Понравилась статья? Добавь ее в закладку (CTRL+D) и не забудь поделиться с друзьями:  



Сейчас читают про: