double arrow

Круг Мора для объемного напряженного состояния


Обратная задача.

Прямая задача

Аналитическое решение прямой задачи определяется формулами (4.6) – (4.9).

Для графического решения строится на плоскости в координатах s-t круг Мора

(рис. 4.9) в следующей последовательности.

Рис. 4.9
 
 

Выбирается прямоугольная система координат так, чтобы ось абсцисс была параллельна большему из главных напряжений s1, по этой оси в выбранном масштабе откладывются отрезки ОА и ОВ, численно равные напряжениям s1 и s2, а на их разности (на отрезке АВ) как на диаметре проводим окружность с центром в точке С.

Из крайней левой точки (В) круга проводим луч, параллельный внешней нормали к рассматриваемой площадке, т.е. под углом a к оси s. Точка пересечения этого луча с окружностью (Da) имеет своими координатами отрезки DaKa и OKa, численно равные касательному ta и нормальному sa напряжениям, действующим на рассматриваемой площадке.

 
 
Из рис.4.9 следует: AC=BC=CDα=,
 
 
СКα=СКβ =СDαcos2α =cos2α

Точка Db, лежащая на противоположном конце диаметра от точки Da, характеризует напряжения sβ и tb, действующие по наклонной площадке, перпендикулярной к первой.




Выполненные преобразования проведены с учетом, что 1+cos2α = 2cos2α., 1-cos2α = 2sin2α.

Полученные выражения для sa, sb, τα и τβ полностью совпадают с аналитическими формулами (4.6) - (4.9).

В заключение следует отметить, что каждая точка круга Мора имеет своими координатами напряжения, действующие на соответствующей площадке, следовательно, зная главные напряжения для плоского напряженного состояния, можно с помощью круга Мора определить напряжения, действующие на различных площадках, проходящих через данную точку. Максимальное касательное напряжение соответствует точке Dc и равно радиусу круга.

Довольно часто приходится решать обратную задачу, т. е. по напряжениям на произвольных площадках sa, ta, sb, tb определять величину и направление главных напряжений. Проще эта задача решается графически, т. е. с помощью круга Мора (рис. 4.10). Рассмотрим порядок его построения.

Прямоугольную систему координат s, t выберем так, чтобы ось абсцисс была параллельна большему из нормальных напряжений (пусть sa > sb). На оси s отложим в выбранном масштабе отрезки ОКa, ОКb, численно равные sa и sb. Из точек Кa и Кb проведем перпендикуляры КaDa, КbDb, которые численно равны соответственноta и τβ aDa = ta, КbDb = τβ = - ta). На отрезке DaDb, как на диаметре, построим круг с центром в точке С. Крайнюю правую точку пересечения круга с осью s обозначим буквой А, крайнюю левую – буквой В. Касательные напряжения в этих точках равны нулю, следовательно, ОА=s1, ОВ=s2 – главные напряжения (.в соответствии с прямой задачей).




Рис. 4.10

параллельна большему из нормальных напряжений (пусть sa > sb). На оси s отложим в выбранном масштабе отрезки ОКa, ОКb, численно равные sa и sb. Из точек Кa и Кb проведем перпендикуляры КaDa, КbDb, которые численно равны соответственноta и τβ aDa = ta, КbDb = τβ = - ta). На отрезке DaDb, как на диаметре, построим круг с центром в точке С. Крайнюю правую точку пересечения круга с осью s обозначим буквой А, крайнюю левую – буквой В. Касательные напряжения в этих точках равны нулю, следовательно, ОА=s1, ОВ=s2 – главные напряжения (.в соответствии с прямой задачей).

Из рис.6.10 определим радиус круга R и величину отрезка ОС (4.12)

(4.13)

C учетом выражений (4.12) , (4.13) получим следующие формулы для главных напряжений

ОА= σI = ОС + R = + (4.14)

ОВ = σII = ОС – R = - (4.15)

Или (4.16)

Для определения направления главного напряжения s1 проведем луч через крайнюю левую точку круга В и точку Da¢, которая симметрична точке Da относительно оси s. Направление луча ВDa¢ совпадает с направлением s1, направление s2 перпендикулярно ему. Угол a0 определится из треугольника ВКaDa¢ (рис. 6.10):

(4.17)

Угол a0 считается положительным, если его откладывают от оси s против часовой стрелки.

4.7 Напряжения на произвольной площадке при объемном напряженном состоянии

В элементарном параллелепипеде, по граням которого действуют все три главных напряжения, рассмотрим произвольную площадку a, нормаль к которой составляет с координатными осями 1,2,3 углы α1 α2 α3.(рис. 4. 11). На этой площадке будет действовать полное напряжение рα, составляющее с нормалью n угол α. Определим его проекции на нормаль к площадке - σα и на саму площадку – τα.



Рис.4.11
Нормальное напряжение, исполь-зуя принцип суперпозиции, можно пред-ставить выражением =,

где- напряжение на рассматриваемой площадке, вызванное действием , а ,- соответственно от напряжений и.Для вычисления этих величин воспользуемся формулой для линейного напряжённого состояния: =, =, =.

С учетом этих значений нормальные напряжения на произвольной площадке определятся равенством

(4.18 )

Для вывода формулы касательных напряжений τα следует рассмотреть его векторную величину . Так как , то .

Опуская выводы, которые следуют из уравнений равновесия рассматриваемой трёх- гранной пирамиды (рис. 3.11), запишем формулу в окончательном виде для вектора полного напряжения на площадке nα :

.

С учётом этого выражения

(4.19)

В качестве примера рассмотрим напряжения на площадке, равнонаклонённой ко всем главным площадкам. Такая площадка называется октаэдрической, а напряжения, действующие на этой площадке, называются октаэдрическими.

Так как для такой площадки , а учитывая, что всегда

, то . Следовательно (4.20)

(4.21)

Так же, как и в случае плоского напряженного состояния, при объемном напряженном состоянии сумма нормальных напряжений по трем взаимно перпендикулярным площадкам, проходящим через рассматриваемую точку, есть величина постоянная.

Рассмотрим графический метод анализа напряженного состояния в точке при объемном напряженном состоянии.

Прежде всего определим напряжения на площадках, параллельных одному из главных напряжений (рис. 4.12)

           
   
s2
 
   
s1
 
 
s3
 
 

       
 
   


а) б) в)

Рис.4.12

На площадках, параллельных s1, (рис. 4.12, а), напряжения зависят только от s2 и s3 и не зависят от s1, т. к. , тогда согласно (4.18)

 
 

Рис. 4.13.

Круг Мора, соответствующий этому случаю, представлен на рис. 4.13 кругом «а».

Напряжения в семействе площадок, параллельных s2 , определяются по кругу «б», а в семействе площадок, параллельных s3 – с помощью круга «в».

В теории упругости доказывается, что площадкам общего положения соответствуют точки, лежащие в заштрихованной области (рис. 4.13).

Из представленного рисунка следует, что наименьшее и наибольшее нормальные напряжения равны наименьшему и наибольшему главным напряжениям , .

Наибольшие касательные напряжения равны радиусу наибольшего круга

и действуют по площадке, равнонаклонённой к площадкам максимального и минимального из главных напряжений ().







Сейчас читают про: