Электронная проводимость

Электропроводность полупроводников

Выбор способа литья

При выборе способа литья для получения заготовки в первую очередь должен быть рассмотрен вопрос экономии металла. Металлоемкость можно снизить конструктивными и технологическими мероприятиями. Часто закладывается неоправданно большой запас прочности деталей, работающих при незначительных нагрузках. За счет изменения конструкции, образования выемок, изменения толщины стенок, применения коробчатых или тавровых сечений можно достичь значительной экономии металла.

При выборе способа получения отливки необходимо оценить все положительные и отрицательные стороны возможных технологических процессов, провести сравнительный анализ.

При сравнении различных способов литья необходимо учитывать различные факторы:

технологические свойства сплава − возможность для получения отливок без дефектов литейного происхождения и для обеспечения равномерной мелкозернистой структуры, высоких механических свойств. Литье в металлические формы нежелательно применять при пониженной жидкотекучести и высокой склонности к усадке (так как возможно образование трещин из-за низкой податливости формы);

технологичность конструкции детали. Сложные по конфигурации отливки получают литьем под давлением, по выплавляемым моделям, в песчаных формах. Литьем в кокиль получают отливки с простой наружной конфигурацией, центробежным литьем – отливки типа тел вращения.

Наиболее тонкостенные отливки получают литьем по выплавляемым моделям и литьем под давлением. Специальные способы литья применяют для получения мелких и средних отливок, при литье в песчаные формы габариты и масса отливок не ограничены.

Следует выбирать способ, обеспечивающий заданную точность размеров и шероховатость поверхности. Высокое качество поверхности дает возможность сохранить при механической обработке литейную корку, имеющую повышенную твердость и износостойкость, снизить себестоимость готовых деталей за счет экономии металла.

Специальные способы литья целесообразно применять в крупносерийном и массовом производствах. Необходимо учитывать возможности имеющегося оборудования, уровень литейной технологии и технологии механической обработки. Наиболее точным показателем, определяющим эффективность применения того или иного способа, является себестоимость отливки.

При комнатной температуре электроны зоны проводимости хаотически двигаются по кристаллу с тепловой скоростью v т, его средняя скорость в заданном направлении равна нулю. При этом можно считать, что электроны находятся в тепловом равновесии с нагретой кристаллической решеткой и средняя температура электронов (как мера их кинетической энергии) соответствует температуре кристалла. Средняя тепловая скорость движения электронов будет определяться классическим соотношением:

(2.21)

где v т ~107 см/с – средняя тепловая скорость электронов, k – постоянная Больцмана.

Электроны взаимодействуют с дефектами кристаллической решетки, между собой и ядрами, изменяя (рассеивая) свою кинетическую энергию. Усредненное значение участков пути, пройденное электроном между актами рассеяния, называются средней длиной свободного пробега. Время между двумя актами взаимодействия – временем свободного пробега: .

При приложении к полупроводнику электрического поля с напряженностью Ē электрон приобретает ускорение , где – эффективная масса электронов у дна зоны проводимости и, соответственно, дополнительную дрейфовую скорость, направленную против поля: , так что, продолжая участвовать в тепловом движении, он постепенно смещается под действием поля.

Рис. 3.2

Электрон под действием электрического поля в твердом теле не может набирать энергию до бесконечности, он провзаимодействует с другим объектом, отдаст ему накопленную энергию (не обязательно всю). Вероятность взаимодействия частиц тем выше, чем меньше их время свободного пробега – τ (зависящая от длины свободного пробега):

(2.22)

Коэффициент пропорциональности между дрейфовой скоростью и напряженностью электрического поля называют подвижностью носителей заряда и обозначают μ[см2/(В∙с)].

(2.23)

Предположим, что ток через образец создается электронами, концентрация которых n см-3 и средняя дрейфовая скорость v др. Поскольку величина тока равна заряду, проходящему через сечение образца в единицу времени, плотность тока при слабом электрическом поле По закону Ома

. , , , где σ -проводимость.

Отсюда легко получить закон Ома в дифференциальной форме:

Jn= σn·E, (2.24)

где σn – электронная проводимость (Ом∙см).

(2.25)

Проводимость материала определяется двумя основными параметрами: подвижностью носителей заряда и их концентрацией.

Существует несколько механизмов рассеяния энергии свободных носителей заряда. Для полупроводников наиболее важные два: рассеяние в результате взаимодействия с колебаниями решетки (решеточное рассеяние) и рассеяние в результате взаимодействия с ионизованной примесью.

Экспериментальные исследования температурной зависимости подвижности показывают, что при низких температурах преобладает рассеяние на ионах примеси, а при более высокихрассеяние на тепловых колебаниях решетки.

При рассеянии на заряженной примеси

, (2.27)

μni~τ~T3 /2. Если в образце доминирует рассеяние на примесях, то с ростом температуры подвижность возрастает.

Для рассеяния на решетке справедливо выражение:

, (2.26)

то есть с ростом температуры подвижность падает. Действительно, длина свободного пробега носителей заряда тем меньше, чем выше температура решетки (чем сильнее колеблется решетка): l~1/T. Для скорости носителей справедливо v ~ T 1/2 (mv2=3kT), тогда: μr ~ τ = l/v ~ 1/T-3/2.

При одновременном действии нескольких механизмов рассеяния для расчета подвижности можно воспользоваться понятием эффективной подвижности носителей:

.   (2.28)

Поскольку в собственном полупроводнике отсутствуют примеси, рассеяние электронов и дырок в нем должно происходить только на тепловых колебаниях решетки, т.е. в собственных кристаллах значение подвижности носителей заряда должно быть максимальным.

Рис. Температурная зависимость подвижности носителей заряда с разным уровнем легирования (N1<N2<N3)

Понравилась статья? Добавь ее в закладку (CTRL+D) и не забудь поделиться с друзьями:  



double arrow
Сейчас читают про: