Получение когерентных волн

Разделение света на когерентные пучки можно осуществить с помощью экранов и щелей, зеркал и преломляющих тел. Рассмотрим некоторые из этих методов.

· Метод Юнга.

Источником света служит ярко освещенная щель S, от которой световая волна падает на две узкие щели S1 и S2, параллельные щели S. Таким образом, щели S1 и S2играют роль когерентных источников. На экране Э (область ВС) наблюдается интерференционная картина в виде чередующихся светлых и темных полос.

· Бипризма Френеля.

Она состоит из двух одинаковых сложенных основаниями призм. Свет от источника S преломляется в обеих призмах, в результате чего за призмой распространяются лучи, как бы исходящие от мнимых источников S1 и S2, являющихся когерентными. Таким образом, на экране Э (область ВС) наблюдается интерференционная картина.

· Оптическая длина пути и разность хода

Пусть две когерентные волны (см. 3.1) создаются одним источником S, но до экрана проходят разные геометрические длины путей l1и l2 в средах с абсолютными показателями преломления n1 и n2 соответственно (рис.4). Тогда фазы этих волн [см. (1) и (2.9)] wt - j1= wt - k1l1 + j0, wt -j2= wt - k2l1 + j0

а разность фаз

j2 -j1 = k2l2 - k1l1 = (12)

где l1= l/n1, l2= l/n2 -длины волн в средах, показатели преломления которых n1 и n2соответственно, l - длина волны в вакууме.

Произведение геометрической длины пути l световой волны на абсолютный показатель преломления n называется оптической длиной пути волны.

Величину (13)

называют оптической разностью хода интерферирующих волн. С учетом этого разность фаз

j2 -j1 = (14)


Понравилась статья? Добавь ее в закладку (CTRL+D) и не забудь поделиться с друзьями:  



double arrow
Сейчас читают про: